首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying relationships between plant functional traits and abiotic gradients is valuable for evaluating potential responses of forest communities to climate change. However, the trajectories of change expected to occur in tropical forest functional characteristics as a function of future climate variation are largely unknown. We modeled community level trait values of Costa Rican rain forests as a function of current and future climate, and quantified potential changes in functional composition. We calculated per‐plot community weighted mean (CWM) trait values for leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen (N) and phosphorus (P) content, and wood basic specific gravity (WSG), for tree and palm species in 127 0.25 ha plots. We modeled the response of CWM traits to current temperature and precipitation gradients using generalized additive modeling. We then predicted and mapped CWM traits values under current and future climate, and quantified potential changes under a global warming scenario (RCP8.5, year 2050). We calculated the area within the multi trait functional space occupied by forest plots under both current and future climate, and determined potential changes in functional space occupied by forest plots. Overall, precipitation predicted CWM traits better than temperature. Models indicated increases in CWM SLA, N and P, and a decrease in CWM LDMC under climate change. Lowland forest communities converged on a single direction of change towards more acquisitive CWM trait values, indicating a change in forest functional composition resulting from a changed climate. Functional space occupied by forest plots was reduced by 50% under the future climate. Functional composition changes may have further effects on forests ecosystem services. Assessing functional trait spatial‐gradients can help bridge the gap between species‐based biogeography and biogeochemical approaches to strengthen biodiversity and ecosystem services conservation efforts.  相似文献   

2.
Tropical forests are shifting in species and trait composition, but the main underlying causes remain unclear because of the short temporal scales of most studies. Here, we develop a novel approach by linking functional trait data with 7000 years of forest dynamics from a fossil pollen record of Lake Sauce in the Peruvian Amazon. We evaluate how climate and human disturbances affect community trait composition. We found weak relationships between environmental conditions and traits at the taxon level, but strong effects for community‐mean traits. Overall, community‐mean traits were more responsive to human disturbances than to climate change; human‐induced erosion increased the dominance of dense‐wooded, non‐zoochorous species with compound leaves, and human‐induced fire increased the dominance of tall, zoochorous taxa with large seeds and simple leaves. This information can help to enhance our understanding of forest responses to past environmental changes, and improve predictions of future changes in tropical forest composition.  相似文献   

3.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

4.
《Global Change Biology》2018,24(5):2143-2158
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species‐level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree‐ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring‐width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994–1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi‐arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi‐arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.  相似文献   

5.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   

6.
Temporal increases of tree mortality have been observed in regions where global warming has decreased long‐term water availability and/or induced droughts. However, temporal decreases in water availability are not a global phenomenon. Understanding how water deficit‐free forests respond to the recent effects of climate change is paramount towards a full appreciation of the impacts of climate change on global forests. Here, we reveal temporally increasing tree mortality across all study species over the last three decades in the central boreal forests of Canada, where long‐term water availability has increased without apparent climate change‐associated drought. In addition, we find that the effects of conspecific tree‐to‐tree competition have intensified temporally as a mechanism for the increased mortality of shade‐intolerant tree species. Our results suggest that the consequences of climate change on tree mortality are more profound than previously thought.  相似文献   

7.
1. While it is clear that land‐use change significantly impacts the taxonomic dimension of soil biodiversity, how the functional dimension responds to land‐use change is less well understood. 2. This study examined how the transformation of primary forests into rubber tree monocultures impacts individual termite species and how this change is reflected in termite taxonomic and functional α‐diversity (within site) and β‐diversity (among sites). 3. Overall, individual species responded strongly to land‐use change, whereby only 11 of the 27 species found were able to tolerate both habitats. These differences caused a 27% reduction in termite taxonomic richness and reduced taxonomic β‐diversity in rubber plantations compared with primary forests. The study also revealed that the forest conversion led to a shift in some termite species with smaller body size, shorter legs and smaller mandibular traits. Primary forests exhibited higher functional richness and functional β‐diversity of termite species, indicating that functional traits of termite species in rubber plantations are more evenly distributed. 4. The present study suggests that forest conversion does not merely decrease taxonomic diversity of termites, but also exerts functional trait filtering within some termite species. The results affirm the need for biodiversity assessments that combine taxonomic and functional indicators when monitoring the impact of land‐use change.  相似文献   

8.
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non‐stationary (i.e. non‐time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above‐ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above‐ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non‐stationary relationships between climate, forest structure and demography. Above‐ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.  相似文献   

9.
Significant changes in the composition of tree species have been observed in various forests worldwide. We hypothesised that these changes might result from variable sensitivities of species to global change, and species sensitivities might be quantified, using functional traits. Employing long‐term (1978–2010) species abundance data of 48 tree species from a permanent subtropical forest plot, where multiple global change factors have been observed, including soil drying, we examined the relationships between temporal trends in abundance and suits of functional traits. We found that species with high photosynthesis rates, leaf phosphorus and nitrogen concentrations, specific leaf area, hydraulic conductivity, turgor loss point and predawn leaf water potential had increased in abundance, while species with opposite trait patterns had decreased. Our results demonstrate that functional traits underlie tree species abundance dynamics in response to drought stress, thus linking traits to compositional shifts in this subtropical forest under global changes.  相似文献   

10.
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate‐induced biomass responses in 12 co‐occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf‐trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition.  相似文献   

11.
Severe droughts can impart long‐lasting legacies on forest ecosystems through lagged effects that hinder tree recovery and suppress whole‐forest carbon uptake. However, the local climatic and edaphic factors that interact to affect drought legacies in temperate forests remain unknown. Here, we pair a dataset of 143 tree ring chronologies across the mesic forests of the eastern US with historical climate and local soil properties. We found legacy effects to be widespread, the magnitude of which increased markedly in diffuse porous species, sites with deep water tables, and in response to late‐season droughts (August–September). Using an ensemble of downscaled climate projections, we additionally show that our sites are projected to drastically increase in water deficit and drought frequency by the end of the century, potentially increasing the size of legacy effects by up to 65% and acting as a significant process shaping forest composition, carbon uptake and mortality.  相似文献   

12.
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co‐benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time‐frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits to achieve systematically maximal cobenefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision‐makingrules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio‐economic models to find restoration solutions that maximize simultaneously biodiversity, carbon stocks, and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost‐effective and adaptable forest management rules to achieve biodiversity, carbon sequestration, and other socio‐economic co‐benefits under global change.  相似文献   

13.
Aim Climate warming and increased wildfire activity are hypothesized to catalyse biogeographical shifts, reducing the resilience of fire‐prone forests world‐wide. Two key mechanisms underpinning hypotheses are: (1) reduced seed availability in large stand‐replacing burn patches, and (2) reduced seedling establishment/survival after post‐fire drought. We tested for regional evidence consistent with these mechanisms in an extensive fire‐prone forest biome by assessing post‐fire tree seedling establishment, a key indicator of forest resilience. Location Subalpine forests, US Rocky Mountains. Methods We analysed post‐fire tree seedling establishment from 184 field plots where stand‐replacing forest fires were followed by varying post‐fire climate conditions. Generalized linear mixed models tested how establishment rates varied with post‐fire drought severity and distance to seed source (among other relevant factors) for tree species with contrasting post‐fire regeneration adaptations. Results Total post‐fire tree seedling establishment (all species combined) declined sharply with greater post‐fire drought severity and with greater distance to seed sources (i.e. the interior of burn patches). Effects varied among key species groups. For conifers that dominate present‐day subalpine forests (Picea engelmannii, Abies lasiocarpa), post‐fire seedling establishment declined sharply with both factors. One exception was serotinous Pinus contorta, which did not vary with either factor. For montane species expected to move upslope under future climate change (Larix occidentalis, Pseudotsuga menziesii, Populus tremuloides) and upper treeline species (Pinus albicaulis), establishment was unrelated to either factor. Greater post‐fire tree seedling establishment on cooler/wetter aspects suggested local topographic refugia during post‐fire droughts. Main conclusions If future drought and wildfire patterns manifest as expected, post‐fire tree seedling establishment of species that currently characterize subalpine forests could be substantially reduced. Compensatory increases from lower montane and upper treeline species may partially offset these reductions, but our data suggest important near‐ to mid‐term shifts in the composition and structure of high‐elevation forests under continued climate warming and increased wildfire activity.  相似文献   

14.
Climatic changes have profound effects on the distribution of biodiversity, but untangling the links between climatic change and ecosystem functioning is challenging, particularly in high diversity systems such as tropical forests. Tropical forests may also show different responses to a changing climate, with baseline climatic conditions potentially inducing differences in the strength and timing of responses to droughts. Trait‐based approaches provide an opportunity to link functional composition, ecosystem function and environmental changes. We demonstrate the power of such approaches by presenting a novel analysis of long‐term responses of different tropical forest to climatic changes along a rainfall gradient. We explore how key ecosystem's biogeochemical properties have shifted over time as a consequence of multi‐decadal drying. Notably, we find that drier tropical forests have increased their deciduous species abundance and generally changed more functionally than forests growing in wetter conditions, suggesting an enhanced ability to adapt ecologically to a drying environment.  相似文献   

15.
Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long‐term resilience of semiarid forests against climate change are limited. In this study, long‐term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long‐term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900–2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests.  相似文献   

16.
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery.  相似文献   

17.
Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land‐use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio‐temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro‐ and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20‐year period (1994–2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land‐use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient‐demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light‐demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency. Hence, our results indicate specific effects of these often confounded anthropogenic processes.  相似文献   

18.
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.  相似文献   

19.
Questions: Is light availability the main factor driving forest dynamics in Pyrenean sub‐alpine forests? Do pines and firs differ in growth, mortality and morphological response to low light availability? Can differences in shade tolerance affect predictions of future biome changes in Pyrenean sub‐alpine forests in the absence of thermal limitation? Location: Montane–sub‐alpine ecotones of the Eastern Pyrenees (NE Spain). Methods: We evaluated morphological plasticity, survival and growth response of saplings of Scots pine, mountain pine and silver fir to light availability in a mixed forest ecotone. For each species, we selected 100 living and 50 dead saplings and measured size, crown morphology and light availability. A wood disk at root collar was then removed for every sapling, and models relating growth and mortality to light were obtained. Results: Fir had the lowest mortality rate (<0.1) for any given light condition. Pines had comparable responses to light availability, although in deep shade Scots pine risked higher mortality (0.35) than mountain pine (0.19). Pines and fir developed opposing strategies to light deprivation: fir employed a conservative strategy based on sacrificing height growth, whereas pines enhanced height growth to escape from shade, but at the expense of higher mortality risk. Scots pine showed higher plasticity than mountain pine for all architectural and morphological traits analysed, having higher adaptive capacity to a changing environment. Conclusions: Our results support the prediction of future biome changes in Pyrenean sub‐alpine forests as silver fir and Scots pine may find appropriate conditions for colonizing mountain pine‐dominated stands due to land‐use change‐related forest densification and climate warming‐related temperature increases, respectively.  相似文献   

20.
Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long‐term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species‐rich forests but decreased in species‐poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species‐rich than species‐poor forests. A further analysis indicated that growth of species‐rich (but not species‐poor) forests was statistically positively associated with rising CO2, and that mortality in species‐poor forests increased more as climate moisture availability decreased than it did in species‐rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号