首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

2.
To evaluate the effect of cultivation, nitrogen fertilizer, and set aside on CH4 uptake after drained marshland was converted into agricultural fields, CH4 fluxes and CH4 concentrations in soil gas were in situ measured in a drained marsh soil, a set‐aside cultivated soil, and cultivated soils in Sanjiang Plain of Northeast China in August 2001. Over the measuring period, the highest CH4 uptake rate was 120.7±6.2 μg CH4 m?2 h?1 in the drained marsh soil and the lowest was 29.5±4.9 μg CH4 m?2 h?1 in the set‐aside cultivated soil, showing that there was no significant recovery of CH4 uptake ability 5 years after cultivation activity was stopped. CH4 uptake rates were significantly less in the cultivated soils than in the drained marsh soil by 30.1–74.6%, which resulted mainly from cultivation and partly from nitrogen addition. A significantly negative correlation between CH4 flux and bulk density in the cultivated soils tilled by machine suggests that cultivation reduced CH4 uptake through compaction, because of the enhanced diffusion resistance for CH4 and O2. Nitrogen fertilization slowly reduced but persistently affected CH4 uptake even after long‐term application of nitrogen.  相似文献   

3.
Northern peatlands are a major natural source of methane (CH4) to the atmosphere. Permafrost conditions and spatial heterogeneity are two of the major challenges for estimating CH4 fluxes from the northern high latitudes. This study reports the development of a new model to upscale CH4 fluxes from plant communities to ecosystem scale in permafrost peatlands by integrating an existing biogeochemical model DeNitrification‐DeComposition (DNDC) with a permafrost model Northern Ecosystem Soil Temperature (NEST). A new ebullition module was developed to track the changes of bubble volumes in the soil profile based on the ideal gas law and Henry's law. The integrated model was tested against observations of CH4 fluxes measured by closed chambers and eddy covariance (EC) method in a polygonal permafrost area in the Lena River Delta, Russia. Results from the tests showed that the simulated soil temperature, summer thaw depths and CH4 fluxes were in agreement with the measurements at the five chamber observation sites; and the modeled area‐weighted average CH4 fluxes were similar to the EC observations in seasonal patterns and annual totals although discrepancy existed in shorter time scales. This study indicates that the integrated model, NEST–DNDC, is capable of upscaling CH4 fluxes from plant communities to larger spatial scales.  相似文献   

4.
The land‐atmosphere exchange of methane (CH4) and carbon dioxide (CO2) in a high‐Arctic wet tundra ecosystem (Rylekærene) in Zackenberg, north‐eastern Greenland, was studied over the full growing season and until early winter in 2008 and from before snow melt until early winter in 2009. The eddy covariance technique was used to estimate CO2 fluxes and a combination of the gradient and eddy covariance methods was used to estimate CH4 fluxes. Small CH4 bursts were observed during spring thawing 2009, but these existed during short periods and would not have any significant effect on the annual budget. Growing season CH4 fluxes were well correlated with soil temperature, gross primary production, and active layer thickness. The CH4 fluxes remained low during the entire autumn, and until early winter. No increase in CH4 fluxes were seen as the soil started to freeze. However, in autumn 2008 there were two CH4 burst events that were highly correlated with atmospheric turbulence. They were likely associated with the release of stored CH4 from soil and vegetation cavities. Over the measurement period, 7.6 and 6.5 g C m?2 was emitted as CH4 in 2008 and in 2009, respectively. Rylekærene acted as a C source during the warmer and wetter measurement period 2008, whereas it was a C sink for the colder and drier period of 2009. Wet tundra ecosystems, such as Rylekærene may thus play a more significant role for the climate in the future, as temperature and precipitation are predicted to increase in the high‐Arctic.  相似文献   

5.
Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m?2 h?1) to a net emission in the wetter soils (0–90 μmol CH4 m?2 h?1). Seasonal variations of CH4 fluxes were related to soil hydrology in both upland and wet soils. Thus, in the upland soils, uptake rates increased with the decreasing soil moisture, whereas CH4 emission was inversely related to the water table depth in the wet soils. Spatial variability of CH4 exchange was related to the abundance of genes involved in CH4 oxidation and production, but there was no indication of a temporal link between microbial groups and CH4 exchange. Our data show that the abundances of genes involved in CH4 oxidation and production are strongly influenced by soil moisture and each other and grouped by the upland–wetland classification but not forest type.  相似文献   

6.
Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long‐term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and 13C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun–Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75–120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and ?31 ± 1 mg CH4 m?2 season?1 at Ambient and RS). Deeper snow reduced Fox by 35–40% and 90–100% in medium‐ (MS) and high‐ (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4 m?2 season?1 at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant‐mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw‐induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently facing.  相似文献   

7.
Drainage of waterlogged sites has been part of the normal forestry practice in Fennoscandia, the Baltic countries, the British Isles and in some parts of Russia since the early 20th century, and currently, about 15 million hectares of peatlands and other wetlands have been drained for forestry purposes. The rate of forest clear-felling on drained peatlands will undergo a rapid increase in the near future, when a large number of these forests approach their regeneration age. A small-scale pilot survey was performed at two nutrient-rich and old peatland drainage areas in southern Finland to study if forest clear-felling has significant impacts on the exchange of nitrous oxide (N2O) and methane (CH4) between soil and atmosphere. The average N2O emissions from the two drainage areas during three growing seasons following clear-felling were 945 and 246 g m–2 d–1. The corresponding CH4 fluxes were –0.07 and –0.52 mg m–2 d–1. Clear-felling had impacts on the environmental factors known to affect the N2O and CH4 fluxes of peatlands, i.e. clear-felling raised the water table level and increased the peat temperature. However, no substantial changes in the fluxes of CH4 following clear-felling were observed. The results concerning N2O indicated a potential for increased emissions following clear-felling of drained peatland forests, but further studies are needed for a critical evaluation of the impacts of clear-felling on the fluxes of CH4 and N2O.  相似文献   

8.
Under the warmer climate, predicted for the future, northern peatlands are expected to become drier. This drying will lower the water table and likely result in reduced emissions of methane (CH4) from these ecosystems. However, the prediction of declining CH4 fluxes does not consider the potential effects of ecological succession, particularly the invasion of sedges into currently wet sites (open water pools, low lawns). The goal of this study was to characterize the relationship between the presence of sedges in peatlands and CH4 efflux under natural conditions and under a climate change simulation (drained peatland). Methane fluxes, gross ecosystem production, and dissolved pore water CH4 concentrations were measured and a vegetation survey was conducted in a natural and drained peatland near St. Charles-de-Bellechasse, Quebec, Canada, in the summer of 2003. Each peatland also had plots where the sedges had been removed by clipping. Sedges were larger, more dominant, and more productive at the drained peatland site. The natural peatland had higher CH4 fluxes than the drained peatland, indicating that drainage was a significant control on CH4 flux. Methane flux was higher from plots with sedges than from plots where sedges had been removed at the natural peatland site, whereas the opposite case was observed at the drained peatland site. These results suggest that CH4 flux was enhanced by sedges at the natural peatland site and attenuated by sedges at the drained peatland site. However, the attenuation of CH4 flux due to sedges at the drained site was reduced in wetter periods. This finding suggests that CH4 flux could be decreased in the event of climate warming due to the greater depth to the water table, and that sedges colonizing these areas could further attenuate CH4 fluxes during dry periods. However, during wet periods, the sedges may cause CH4 fluxes to be higher than is currently predicted for climate change scenarios.  相似文献   

9.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

10.
Quantifying landscape‐scale methane (CH4) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape‐level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge‐dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up‐scaled using a high‐resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water‐table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km2 area. For the full growing season (May to October), ~ 1.1–1.4 g CH4 m?2 was released across the 100 km2 area. This was based on up‐scaled lawn emissions of 1.2–1.5 g CH4 m?2, vs. an up‐scaled uptake of 0.07–0.15 g CH4 m?2 by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general.  相似文献   

11.
Landscape patterns of CH4 fluxes in an alpine tundra ecosystem   总被引:2,自引:0,他引:2  
We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. InCarex-dominated meadows, which receive the most moisture from snowmelt, net CH4 production occurred. However, CH4 production in oneCarex site (seasonal mean=+8.45 mg CH4 m–2 d–1) was significantly larger than in the otherCarex sites (seasonal means=–0.06 and +0.05 mg CH4 m–2 d–1). This high CH4 flux may have resulted from shallower snowpack during the winter. InAcomastylis meadows, which have an intermediate moisture regime, CH4 oxidation dominated (seasonal mean=–0.43 mg CH4 m–2 d–1). In the windsweptKobresia meadow plant community, which receive the least amount of moisture from snowmelt, only CH4 oxidation was observed (seasonal mean=–0.77 mg CH4 m–2 d–1). Methane fluxes correlated with a different set of environmental factors within each plant community. In theCarex plant community, CH4 emission was limited by soil temperature. In theAcomastylis meadows, CH4 oxidation rates correlated positively with soil temperature and negatively with soil moisture. In theKobresia community, CH4 oxidation was stimulated by precipitation. Thus, both snow-free season CH4 fluxes and the controls on those CH4 fluxes were related to the plant communities determined by winter snowpack.  相似文献   

12.
Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open‐top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of ?300 to ?198 g CO2–eq m?2 to a source of 105 to 144 g CO2–eq m?2. At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2, we provide here the first in situ evidence of increasing N2O emissions from tundra soils with warming. Warming promoted N2O release not only from bare peat, previously identified as a strong N2O source, but also from the abundant, vegetated peat surfaces that do not emit N2O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic.  相似文献   

13.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

14.
Arctic wetlands are currently net sources of atmospheric CH4. Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet‐to‐dry permafrost degradation gradient from low‐centered (intact) to flat‐ and high‐centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m?2 s?1 in intact polygons to 7 nmol m?2 s?1 in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low‐centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.  相似文献   

15.
16.
We report on temporal and spatial variability in net methane (CH4) fluxes measured during the thaw period of 1999 and 2000 at three study sites along a c. 8° latitudinal gradient in the Fennoscandian mountain range and across the mountain birch‐tundra ecotone. All of the sites studied here were underlain by well‐drained mesic soils. In addition, we conducted warming experiments in the field to simulate future climate change. Our results show significant CH4 uptake at mesic sites spanning the forest‐tundra ecotone: on average 0.031 and 0.0065 mg CH4 m?2 h?1 during the 1999 and 2000 thaw periods, respectively, in Abisko (Sweden), and 0.019 and 0.032 mg CH4 m?2 h?1 during 2000 in Dovrefjell and Joatka (Norway), respectively. These values were both temporally and spatially highly variable, and multiple regression analysis of data from Abisko showed no consistent relationship with soil‐moisture status and temperature. Also, there was no consistent difference in CH4 fluxes between forest and tundra plots; our data, therefore, provide no support for the hypothesis that conversion of tundra to mountain birch forest, or vice versa, would result in a systematic change in the magnitude or direction of net CH4 fluxes in this region. Experimental warming treatments were associated with a 2.4 °C increase in soil temperatures (5 cm depth) in 1999 in Abisko, but no consistent soil warming was noted at any of the three field locations during 2000. In spite of this, there were significant treatment effects, principally early during the thaw period, with increased CH4 uptake compared with control (ambient) plots. These results suggest that direct effects of air warming on vegetation processes (e.g. transpiration, root exudation and nutrient assimilation) can influence CH4 fluxes even in predominantly methanotrophic environments. We conclude that net CH4 oxidation is significant in these cold, mesic soils and could be strengthened in an environmental change scenario involving a combination of (i) an increase in the length of the thaw period and (ii) increased mean temperatures during this period in combination with decreased soil‐moisture content.  相似文献   

17.
Greenhouse gas fluxes from vegetated drained lake basins have been largely unstudied, although these land features constitute up to 47% of the land cover in the Arctic Coastal Plain in northern Alaska. To describe current and to better predict future sink/source activity of the Arctic tundra, it is important to assess these vegetated drained lake basins with respect to the patterns of and controls on gross primary production (GPP), net ecosystem exchange, and ecosystem respiration (ER). We measured CO2 fluxes and key environmental variables during the 2007 growing season (June through August) in 12 vegetated drained lake basins representing three age classes (young, drained about 50 years ago; medium, drained between 50 and 300 years ago; and old, drained between 300 and 2000 years ago, as determined by Hinkel et al., 2003) in the Arctic Coastal Plain. Young vegetated drained lake basins had both the highest average GPP over the summer (11.4 gCO2 m?2 day?1) and the highest average summer ER (7.3 gCO2 m?2 day?1), while medium and old vegetated drained lake basins showed lower and similar GPP (7.9 and 7.2 gCO2 m?2 day?1, respectively), and ER (5.2 and 4 gCO2 m?2 day?1, respectively). Productivity decreases with age as nutrients are locked up in living plant material and dead organic matter. However, we showed that old vegetated drained lakes basins maintained relatively high productivity because of the increased development of ice‐wedge polygons, the formation of ponds, and the re‐establishment of very productive species. Comparison of the seasonal CO2 fluxes and concomitant environmental factors over this chronosequence provides the basis for better understanding the patterns and controls on CO2 flux across the coastal plain of the North Slope of Alaska and for more accurately estimating current and future contribution of the Arctic to the global carbon budget.  相似文献   

18.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

19.
Thawing permafrost in the sub‐Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub‐Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO2) and CH4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet‐growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO2 sink function with about 16% and the CH4 emissions with 22%. Calculating the flux as CO2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100‐year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH4 emissions.  相似文献   

20.
Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed‐chamber technique from August to November 2003 and from August 2006 to July 2007 on tree‐covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high‐resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha−1 yr−1) than for soils with permafrost (0.37 kg CH4 ha−1 yr−1). In well‐drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha−1 yr−1). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha−1 yr−1). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha−1 yr−1. Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号