首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
  1. Abundance of the young‐of‐the‐year (YOY) fish can vary greatly among years and it may be driven by several key biological processes (i.e. adult spawning, egg survival and fry survival) that span several months. However, the relative influence of seasonal weather patterns on YOY abundance is poorly understood.
  2. We assessed the importance of seasonal air temperature (a surrogate for stream temperature) and precipitation (a surrogate for stream flow) on brook trout (Salvelinus fontinalis) YOY summer abundance using a 29‐year data set from 115 sites in Shenandoah National Park, Virginia, U.S.A. We used a Bayesian hierarchical model that allowed the effect of seasonal weather covariates to vary among sites and accounted for imperfect detection of individuals.
  3. Summer YOY abundance was affected by preceding seasonal air temperature and precipitation, and these regional‐scale drivers led to spatial synchrony in YOY abundance dynamics across the 170‐km‐long study area. Mean winter precipitation had the greatest effect on YOY abundance and the relationship was negative. Mean autumn precipitation, and winter and spring temperature had significantly positive effects on YOY abundance, and mean autumn temperature had a significant negative effect. In addition, the effect of summer precipitation differed along a latitudinal gradient, with YOY abundance at more northern sites being more responsive to inter‐annual variation in summer precipitation.
  4. Strong YOY years resulted in high abundance of adults (>age 1 + fish) in the subsequent year at more than half of sites. However, higher adult abundance did not result in higher YOY abundance in the subsequent year at any of the study sites (i.e. no positive stock–recruitment relationship).
  5. Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.
  相似文献   

2.
    
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub‐disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species’ presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change.  相似文献   

3.
    
Recent technological and methodological advances have revolutionized wildlife monitoring. Although most biodiversity monitoring initiatives are geared towards focal species of conservation concern, researchers are increasingly studying entire communities, specifically the spatiotemporal drivers of community size and structure and interactions among species. This has resulted in the emergence of multi-species occupancy models (MSOMs) as a promising and efficient approach for the study of community ecology. Given the potential of MSOMs for conservation and management action, it is critical to know whether study design and model assumptions are consistent with inference objectives. This is especially true for studies that are designed for a focal species but can give insights about a community. Here, we review the recent literature on MSOMs, identify areas of improvement in the multi-species study workflow, and provide a reference model for best practices for focal species and community monitoring study design. We reviewed 92 studies published between 2009 and early 2018, spanning 27 countries and a variety of taxa. There is a consistent under-reporting of details that are central to determining the adequacy of designs for generating data that can be used to make inferences about community-level patterns of occupancy, including the spatial and temporal extent, types of detectors used, covariates considered, and choice of field methods and statistical tools. This reporting bias could consequently result in skewed estimates, affecting conservation actions and management plans. On the other hand, comprehensive reporting is likely to help researchers working on MSOMs assess the robustness of inferences, in addition to making strides in terms of reproducibility and reusability of data. We use our literature review to inform a roadmap with best practices for MSOM studies, from simulations to design considerations and reporting, for the collection of new data as well as those involving existing datasets.  相似文献   

4.
Length-frequency data collected from fish landings in the Kenya waters of Lake Victoria were used to estimate the growth parameters, total mortality rate and growth performance index in Oreochromis niloticus. The asymptotic length, (L ) and the ratio of the total mortality rate (Z) to the growth constant (K), were estimated to be 64.6 cm and 3.219 respectively. K was 0.254 y-1, Z was 0.818 y-1 and the growth performance index θ′ = Log10 K + 2 log10 L∞ = 3.025, which is rather high as compared to other tilapia populations in natural waters.  相似文献   

5.
6.
The catches of a small artisanal fishery for flying fishes (Families Exocoetidae and Hemiramphidae) on the Danajon Bank in the Camotes Sea. Central Visayas, were recorded during a 14-month period between 1987–1988. Catches were made using floating drive-in-nets deployed from small motorized canoes. Three species, Cheilopogon nigricans, Cypselurus opisthopus and Oxyporhamphus convexus , formed about 90% of landings. Growth, mortality and related parameters for the three dominant species in the catch were estimated from length-frequency data. Seasonal variations in catch rate and recruitment are described and thought to be linked to the two monsoon periods in the Philippines. Total mortality rates were very high and, while these may be the result of migratory movements rather than attrition, they are a cause for concern in such a highly selective fishery.  相似文献   

7.
Zebra seabream, Diplodus cervinus cervinus, caught off the Canary Islands is characterized by protogynous hermaphroditism. The male:female ratio is in favour of females (1:2.16). The reproductive season extends from spring to summer, with a peak in spawning activity in May–June. Males reach maturity at a larger total length, 327mm (5 years old) than females 273mm (4 years old). Recruitment occurs from late October to January in shallow waters of 0.5–8m depth along the coastal line. The recruits are located over rocky substrates with an important algae vegetation forming schools lower than 2m2. During the spawning season, schools of adults from 3 to 8 fish are observed. The schools are formed by one large individual and a few moderate size individuals. Mating takes place in small groups formed by one dominant male and a group of several females (polygamy). Moderate size individuals are often observed mixed in large schools (up to 30 individuals) of Diplodus sargus cadenati. Subadults form groups of a few fish (<5 individuals) or more commonly mixed groups (>15 individuals) with individuals of species of similar size. Otoliths age readings indicate that the population consists of 18 age groups, including a very high proportion of individuals between 2 and 4 years old. The von Bertalanffy growth parameters for the whole population are: L = 603mm, k = 0.149 year–1, and t0 = –0.22 year. The mean rates of total, natural and fishing mortality are 0.551, 0.215 and 0.336 year–1, respectively. The length at first capture is 183mm. The exploitation rate indicates that the stock is overfished. The direct effects of fishing on the population result in changes in the abundance, with a reduction to 85% of the unexploited equilibrium level. The length at first capture by the commercial fishery is less than the length at maturity. With 58% of the total catch below this length there is a danger of recruitment overfishing.  相似文献   

8.
    
Extinction debt refers to delayed species extinctions expected as a consequence of ecosystem perturbation. Quantifying such extinctions and investigating long‐term consequences of perturbations has proven challenging, because perturbations are not isolated and occur across various spatial and temporal scales, from local habitat losses to global warming. Additionally, the relative importance of eco‐evolutionary processes varies across scales, because levels of ecological organization, i.e. individuals, (meta)populations and (meta)communities, respond hierarchically to perturbations. To summarize our current knowledge of the scales and mechanisms influencing extinction debts, we reviewed recent empirical, theoretical and methodological studies addressing either the spatio–temporal scales of extinction debts or the eco‐evolutionary mechanisms delaying extinctions. Extinction debts were detected across a range of ecosystems and taxonomic groups, with estimates ranging from 9 to 90% of current species richness. The duration over which debts have been sustained varies from 5 to 570 yr, and projections of the total period required to settle a debt can extend to 1000 yr. Reported causes of delayed extinctions are 1) life‐history traits that prolong individual survival, and 2) population and metapopulation dynamics that maintain populations under deteriorated conditions. Other potential factors that may extend survival time such as microevolutionary dynamics, or delayed extinctions of interaction partners, have rarely been analyzed. Therefore, we propose a roadmap for future research with three key avenues: 1) the microevolutionary dynamics of extinction processes, 2) the disjunctive loss of interacting species and 3) the impact of multiple regimes of perturbation on the payment of debts. For their ability to integrate processes occurring at different levels of ecological organization, we highlight mechanistic simulation models as tools to address these knowledge gaps and to deepen our understanding of extinction dynamics.  相似文献   

9.
A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.  相似文献   

10.
    
Parapatry is a biogeographical term used to refer to organisms whose ranges do not overlap, but are immediately adjacent to each other; they only co‐occur – if at all – in a narrow contact zone. Often there are no environmental barriers in the contact zones, hence competitive interaction is usually advocated as the factor that modulates species distribution ranges. Even though the effects of climate change on species distribution have been widely studied, few studies have explored these effects on the biogeographical relationships between closely related, parapatric, species. We modelled environmental favourability for three parapatric hare species in Europe – Lepus granatensis, L. europaeus and L. timidus – using ecogeographical variables and projected the models into the future according to the IPCC A2 emissions scenario. Favourabilities for present and future scenarios were combined using fuzzy logic with the following aims: (i) to determine the biogeographical relationships between hare species in parapatry, that is L. granatensis/L. europaeus and L. europaeus/L. timidus and (ii) to assess the effects of climate change on each species as well as on their interspecific interactions. In their contact area L. granatensis achieved higher favourability values than L. europaeus, suggesting that if both species have a similar population status, the former species may have some advantages over the latter if competitive relationships are established. Climate change had the most striking effect on the distribution of L. timidus, especially when interspecific interactions with L. europaeus were taken into account, which may compromise the co‐existence of L. timidus. The results of this study are relevant not only for understanding the distribution patterns of the hares studied and the effects of climate change on these patterns, but also for improving the general application of species distribution models to the prediction of the effects of climate change on biodiversity.  相似文献   

11.
Poor nutrition and other challenges during infancy can impose delayed costs, and it has been proposed that expression of costs during adulthood should involve increased mortality rather than reduced reproduction. Demonstrations of delayed costs come mostly from experimental manipulations of the diet and hormones of captive infants of short-lived species, and we know very little about how natural poor starts in life affect wild animals over their lifetimes. In the blue-footed booby, sibling conflict obliges younger brood members to grow up suffering aggressive subordination, food deprivation and elevated stress hormone, but surviving fledglings showed no deficit in reproduction over the first 5-10 years. A study of 7927 individuals from two-fledgling and singleton broods from 20 cohorts found no significant evidence of a higher rate of mortality nor a lower rate of recruitment in younger fledglings than in elder fledglings or singletons at any age over the 20 year lifespan. Development of boobies may be buffered against the three challenges of subordination. Experimental challenges to neonates that result in delayed costs have usually been more severe, more prolonged and more abruptly suspended, and it is unclear which natural situations they mimic.  相似文献   

12.
13.
14.
    
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

15.
    
  1. Biotic interactions affect species distributions, and environmental factors that influence these interactions can play a key role when range shifts in response to environmental change are modelled.
  2. In a field experiment using enclosures, we studied the effects of the thermal habitat on intra‐ versus inter‐specific competition of juvenile Dolly Varden Salvelinus malma and white‐spotted charr Salvelinus leucomaenis, as measured by differences in specific growth rates during summer in allopatric and sympatric treatments. Previous laboratory experiments have shown mixed results regarding the importance of temperature‐dependent competitive abilities as a main driver for spatial segregation in stream fishes, and no study so far has confirmed its existence in natural streams.
  3. Under natural conditions in areas where the two species occur in sympatry, Dolly Varden dominate spring‐fed tributaries (cold, stable thermal regime), whereas both species often coexist in non‐spring‐fed tributaries (warm, unstable thermal regime). Enclosures (charr density = 6 per m2) were placed in non‐spring‐fed (10–14°C) and spring‐fed (7–8°C) tributaries.
  4. In enclosures placed in non‐spring‐fed tributaries, Dolly Varden grew 0.81% per day in allopatry and had negative growth (?0.33% per day) in sympatry, whereas growth rates were similar in allopatry and sympatry in spring‐fed tributaries (0.68 and 0.58% per day). White‐spotted charr grew better in sympatry than in allopatry in both thermal habitats. In non‐spring‐fed tributaries, they grew 0.17 and 0.79% per day and in spring‐fed tributaries 0.46 and 0.75% per day in allopatry and sympatry, respectively.
  5. The negative effect of inter‐specific competition from white‐spotted charr on Dolly Varden thus depended on the thermal habitat. However, there was no strong evidence of a temperature‐dependent effect of intra‐ and inter‐specific competition on white‐spotted charr growth.
  6. Multiple factors may shape species distribution patterns, and we show that temperature may mediate competitive outcomes and thus coexistence in stream fish. These effects of temperature will be important to incorporate into mechanistic and dynamic species distribution models.
  相似文献   

16.
    
The juvenile life stage is a crucial determinant of forest dynamics and a first indicator of changes to species' ranges under climate change. However, paucity of detailed re-measurement data of seedlings, saplings and small trees means that their demography is not well understood at large scales, and rarely represented in forest models in detail. In this study we quantify the effects of climate and density dependence on recruitment and juvenile growth and mortality rates of thirteen species measured in the Spanish Forest Inventory. Single-census sapling count data is used to constrain demographic parameters of a simple forest juvenile dynamics model based on the perfect plasticity approximation model (PPA) within a likelihood-free parameterisation method, Approximate Bayesian Computation. Our results highlight marked differences between species, and the important role of climate and stand structure, in controlling juvenile dynamics. Recruitment had a hump-shaped relationship with conspecific density, and for most species conspecific competition had a stronger negative effect than heterospecific competition. Mediterranean species showed on average higher mortality and lower growth rates than temperate species, and in low density stands recruitment and mortality rates were positively correlated. Under climate change our model predicted declines in recruitment rates for almost all species. Reliable predictive models of forest dynamics should include realistic representation of critical early life-stage processes and our approach demonstrates that existing coarse count data can be used to parameterise such models. Approximate Bayesian Computation may have wide application in many fields of ecology to unlock information about past processes from single survey observations.  相似文献   

17.
1. We tested the hypothesis that lifetime mortality patterns and their corresponding rates and causal factors differ among populations of stream‐living salmonids. To this end, we examined the lifetime mortality patterns of several successive cohorts of two stream‐living brown trout (Salmo trutta) populations in Spain and Denmark. 2. In the southern population, we observed a consistent two‐phase pattern, in which mortality was negligible during the first half of the lifetime and severe during the rest of the lifetime. In contrast, the northern population demonstrated a three‐phase pattern with an earlier phase varying from negligible to severe, followed by a second stage of weak mortality, and lastly by a third life stage of severe mortality. 3. Despite substantial differences in the mortality patterns between the two populations, the combined effect of recruitment (as a proxy of the density‐dependent processes occurring during the lifetime) and mean body mass (as a proxy of growth experienced by individuals in a given cohort) explained c. 89% of the total lifetime mortality rates across cohorts and populations. 4. A comparison with other published data on populations of stream‐living brown trout within its native range highlighted lifetime mortality patterns of one, two, three and four phases, but also suggested that common patterns may occur in populations that experience similar individual growth and population density.  相似文献   

18.
19.
    

Aims

Species distributions are hypothesized to be underlain by a complex association of processes that span multiple spatial scales including biotic interactions, dispersal limitation, fine‐scale resource gradients and climate. Species disequilibrium with climate may reflect the effects of non‐climatic processes on species distributions, yet distribution models have rarely directly considered non‐climatic processes. Here, we use a Joint Species Distribution Model (JSDM) to investigate the influence of non‐climatic factors on species co‐occurrence patterns and to directly quantify the relative influences of climate and alternative processes that may generate correlated responses in species distributions, such as species interactions, on tree co‐occurrence patterns.

Location

US Rocky Mountains.

Methods

We apply a Bayesian JSDM to simultaneously model the co‐occurrence patterns of ten dominant tree species across the Rocky Mountains, and evaluate climatic and residual correlations from the fitted model to determine the relative contribution of each component to observed co‐occurrence patterns. We also evaluate predictions generated from the fitted model relative to a single‐species modelling approach.

Results

For most species, correlation due to climate covariates exceeded residual correlation, indicating an overriding influence of broad‐scale climate on co‐occurrence patterns. Accounting for covariance among species did not significantly improve predictions relative to a single‐species approach, providing limited evidence for a strong independent influence of species interactions on distribution patterns.

Conclusions

Overall, our findings indicate that climate is an important driver of regional biodiversity patterns and that interactions between dominant tree species contribute little to explain species co‐occurrence patterns among Rocky Mountain trees.  相似文献   

20.
    
Biotic interactions are widely recognised as the backbone of ecological communities, but how best to study them is a subject of intense debate, especially at macro-ecological scales. While some researchers claim that biotic interactions need to be observed directly, others use proxies and statistical approaches to infer them. Despite this ambiguity, studying and predicting the influence of biotic interactions on biogeographic patterns is a thriving area of research with crucial implications for conservation. Three distinct approaches are currently being explored. The first approach involves empirical observation and measurement of biotic interactions' effects on species demography in laboratory or field settings. While these findings contribute to theory and to understanding species' demographies, they can be challenging to generalise on a larger scale. The second approach centers on inferring biotic associations from observed co-occurrences in space and time. The goal is to distinguish the environmental and biotic effects on species distributions. The third approach constructs extensive potential interaction networks, known as metanetworks, by leveraging existing knowledge about species ecology and interactions. This approach analyses local realisations of these networks using occurrence data and allows understanding large distributions of multi-taxa assemblages. In this piece, we appraise these three approaches, highlighting their respective strengths and limitations. Instead of seeing them as conflicting, we advocate for their integration to enhance our understanding and expand applications in the emerging field of interaction biogeography. This integration shows promise for ecosystem understanding and management in the Anthropocene era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号