首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free‐air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted δ13C) into root‐derived particulate organic matter (POM) pools to 90‐cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N contents were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. Greater C inputs from fine‐root detritus under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long‐term laboratory incubations, possibly because microbial biomass was lower in the CO2‐enriched plots. Furthermore, the δ13CO2 of the C mineralized from the incubated soil closely tracked the δ13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate significant priming of the decomposition of pre‐experiment soil organic matter (SOM). Although potential C mineralization rates were positively and linearly related to total SOM C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may increase the potential for long‐term soil C storage. However, C in deeper soil is likely to take many years to accrue to a significant fraction of total soil C given relatively smaller root inputs at depth. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].  相似文献   

2.
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.  相似文献   

3.
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2–5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century‐scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field‐based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant‐ and SOM‐derived CO2 separated via δ13CO2. Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM‐derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.  相似文献   

4.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   

5.
Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO2 concentrations and nutrient availability on surface elevation change in intact mixed‐species blocks of UK salt marsh using six open‐top chambers receiving CO2‐enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO2. Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO2‐grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO2 concentrations rise and should be considered in future wetland models for the region. Elevated CO2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where migration upwards within the tidal frame is constrained.  相似文献   

6.
Incorporating crop residues and biochar has received increasing attention as tools to mitigate atmospheric carbon dioxide (CO2) emissions and promote soil carbon (C) sequestration. However, direct comparisons between biochar, torrefied biomass, and straw on both labile and recalcitrant soil organic matter (SOM) remain poorly understood. In this study, we explored the impact of biochars produced at different temperatures and torrefied biomass on the simple C substrates (glucose, amino acids), plant residues (Lolium perenne L.), and native SOM breakdown in soil using a 14C labeling approach. Torrefied biomass and biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550 °C) were incorporated into a sandy loam soil and their impact on C turnover compared to an unamended soil or one amended with unprocessed straw. Biochar, torrefied biomass, and straw application induced a shift in the soil microbial community size, activity, and structure with the greatest effects in the straw‐amended soil. In addition, they also resulted in changes in microbial carbon use efficiency (CUE) leading to more substrate C being partitioned into catabolic processes. While overall the biochar, torrefied biomass, and straw addition increased soil respiration, it reduced the turnover rate of the simple C substrates, plant residues, and native SOM and had no appreciable effect on the turnover rate of the microbial biomass. The negative SOM priming was positively correlated with biochar production temperature. We therefore ascribe the increase in soil CO2 efflux to biochar‐derived C rather than that originating from SOM. In conclusion, the SOM priming magnitude is strongly influenced by both the soil organic C quality and the biochar properties. In comparison with straw, biochar has the greatest potential to promote soil C storage. However, straw and torrefied biomass may have other cobenefits which may make them more suitable as a CO2 abatement strategy.  相似文献   

7.
Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant‐available N around the thaw‐front. Because plant production in these peatlands is N‐limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N‐availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N‐availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw‐front (45 cm depth) and whether N‐uptake (15N‐tracer) at the thaw‐front occurs during maximum thaw‐depth, coinciding with the end of the growing season. Moreover, we performed a unique 3‐year belowground fertilization experiment with fully factorial combinations of deep‐ (thaw‐front) and shallow‐fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw‐front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N‐uptake from the thaw‐front between autumn and spring when aboveground tissue is largely senescent. In response to 3‐year shallow‐belowground fertilization (S) both shallow‐ (Empetrum hermaphroditum) and deep‐rooting species increased aboveground biomass and N‐content, but only deep‐rooting species responded positively to enhanced nutrient supply at the thaw‐front (D). Moreover, the effects of shallow‐fertilization and thaw‐front fertilization on aboveground biomass production of the deep‐rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant‐available N released from thawing permafrost can form a thus far overlooked additional N‐source for deep‐rooting subarctic plant species and increase their biomass production beyond the already established impact of warming‐driven enhanced shallow N‐mineralization. This may result in shifts in plant community composition and may partially counteract the increased carbon losses from thawing permafrost.  相似文献   

8.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

9.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

10.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4‐sucrose or C4‐maize straw to C3‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.  相似文献   

11.
Worldwide, regularly recurring wildfires shape many peatland ecosystems to the extent that fire‐adapted species often dominate plant communities, suggesting that wildfire is an integral part of peatland ecology rather than an anomaly. The most destructive blazes are smoldering fires that are usually initiated in periods of drought and can combust entire peatland carbon stores. However, peatland wildfires more typically occur as low‐severity surface burns that arise in the dormant season when vegetation is desiccated, and soil moisture is high. In such low‐severity fires, surface layers experience flash heating, but there is little loss of underlying peat to combustion. This study examines the potential importance of such processes in several peatlands that span a gradient from hemiboreal to tropical ecozones and experience a wide range of fire return intervals. We show that low‐severity fires can increase the pool of stable soil carbon by thermally altering the chemistry of soil organic matter (SOM), thereby reducing rates of microbial respiration. Using X‐ray photoelectron spectroscopy and Fourier transform infrared, we demonstrate that low‐severity fires significantly increase the degree of carbon condensation and aromatization of SOM functional groups, particularly on the surface of peat aggregates. Laboratory incubations show lower CO2 emissions from peat subjected to low‐severity fire and predict lower cumulative CO2 emissions from burned peat after 1–3 years. Also, low‐severity fires reduce the temperature sensitivity (Q10) of peat, indicating that these fires can inhibit microbial access to SOM. The increased stability of thermally altered SOM may allow a greater proportion of organic matter to survive vertical migration into saturated and anaerobic zones of peatlands where environmental conditions physiochemically protect carbon stores from decomposition for thousands of years. Thus, across latitudes, low‐severity fire is an overlooked factor influencing carbon cycling in peatlands, which is relevant to global carbon budgets as climate change alters fire regimes worldwide.  相似文献   

12.
Free‐air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)‐limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18‐month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P‐limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (‐0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability – particularly for phosphate – in P‐limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C‐accumulation under future predicted CO2 concentrations.  相似文献   

13.
Understanding the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is important for predicting soil carbon (C) sequestration in terrestrial ecosystems under warming scenarios. Whether Q10 varies predictably with ecosystem succession and the ways in which the stoichiometry of input SOM influences Q10 remain largely unknown. We investigate these issues using a grassland succession series from free‐grazing to 31‐year grazing‐exclusion grasslands in Inner Mongolia, and an incubation experiment performed at six temperatures (0, 5, 10, 15, 20, and 25°C) and with four substrates: control (CK), glucose (GLU), mixed grass leaf (GRA), and Medicago falcata leaf (MED). The results showed that basal soil respiration (20°C) and microbial biomass C (MBC) logarithmically decreased with grassland succession. Q10 decreased logarithmically from 1.43 in free‐grazing grasslands to 1.22 in 31‐year grazing‐exclusion grasslands. Q10 increased significantly with the addition of substrates, and the Q10 levels increased with increase in N:C ratios of substrate. Moreover, accumulated C mineralization was controlled by the N:C ratio of newly input SOM and by incubation temperature. Changes in Q10 with grassland ecosystem succession are controlled by the stoichiometry of newly input SOM, MBC, and SOM quality, and the combined effects of which could partially explain the mechanisms underlying soil C sequestration in the long‐term grazing‐exclusion grasslands in Inner Mongolia, China. The findings highlight the effect of substrate stoichiometry on Q10 which requires further study.  相似文献   

14.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

15.
The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land‐atmosphere carbon exchange. Previous forest recovery assessments using satellite optical‐infrared normalized difference vegetation index (NDVI) and tower CO2 eddy covariance techniques indicate rapid vegetation recovery within 5–10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post‐fire vegetation response to inform regional recovery assessments. We analyzed a multi‐year (2003–2010) satellite VOD record from the NASA AMSR‐E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post‐fire canopy biomass recovery within 3–7 years, lagging NDVI recovery by 1–5 years. The VOD lag was attributed to slower non‐photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre‐burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical‐infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.  相似文献   

16.
In the present study, `natural 13C tracer method' was used to partition the belowground respiration into rhizosphere respiration and soil microbial respiration to test the hypothesis that defoliation affects rhizosphere respiration and rhizosphere priming effect on decomposition of soil organic matter (SOM). A C3 plant species, Helianthus annuus (sunflower), was grown in `C4' soil in microcosms so that the CO2 evolved from plant-soil system can be partitioned. Four levels of defoliation intensities were established by manual clipping. CO2 evolved from plant-soil system was trapped during 0–4 h after defoliation (HAD), 5–22 HAD and 23–46 HAD using a closed circulating system, respectively. We found that both rhizosphere respiration and soil microbial respiration of the clipped plants were either unchanged or significantly enhanced compared to unclipped plants at 45% defoliation level during all sampling intervals. Soil microbial respiration increased significantly at all defoliation levels during 0–4 HAD, however, both rhizosphere respiration and soil microbial respiration decreased significantly during 5–22 HAD or 23–46 HAD when 20% or 74 clearly demonstrated that the defoliation treatments modified the rhizosphere priming effect on SOM decomposition. The total cumulative rhizosphere priming effects on SOM decomposition during 0–46 HAD were 146%, 241%, 204% and 205% when 0%, 20%, 45% and <74%.  相似文献   

17.
Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above‐ and belowground plant organs remains incomplete. We conducted a meta‐analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO2], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO2] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated [CO2] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated [CO2] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated [CO2] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above‐ and belowground ecosystem functions, such as litter mineralization and above‐ and belowground food webs.  相似文献   

18.
Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2 efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2 loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (mean Q10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase, N‐acetyl‐β‐d ‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2 efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (the Q10 value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2 loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.  相似文献   

19.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   

20.
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold‐water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold‐water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO1058 μatm, Ωara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO448 μatm, Ωara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2879 μatm, Ωara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold‐water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号