首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef damselfish (Pomacentridae) that differ in their levels of habitat specialisation. The lemon damselfish Pomacentrus moluccensis, a habitat specialist, consistently selected complex coral habitat across all temperature treatments (selected based on local average seasonal temperatures naturally experienced in situ: ambient winter 22°C; ambient summer 28°C; and elevated 31°C). Unexpectedly, the neon damselfish Pomacentrus coelestis and scissortail sergeant Abudefduf sexfasciatus, both of which have more generalist habitat associations, developed strong habitat preferences (for complex coral and boulder habitat, respectively) at the elevated temperature treatment (31°C) compared to no single preferred habitat at 22°C or 28°C. The observed shifts in habitat preference with temperature suggest that we may be currently underestimating the vulnerability of some habitat generalists to climate change and highlight that the ongoing loss of complex live coral through coral bleaching could further exacerbate resource overlap and species competition in ways not currently considered in climate change models.  相似文献   

2.
Dense vegetation cover undoubtedly offers certain advantages for small and slow-moving animals, but its disadvantages concerning some aspects of spatial ecology (e.g. movements) were neglected in previous studies. Tortoises could get stuck in vegetation by protuberant part of the shell and thus succumb to overheating, dehydration or predators. To examine how vegetation cover shapes behavioural responses of ‘trapped’ tortoises, we tested adults of six populations from habitats with contrasting vegetation cover. The tortoises were fitted with a non-stretchable rope, representing a piece of vegetation, stuck on the protruding front part of the plastron. Results suggested the existence of two distinct releasing techniques. First, and only successful in this study, is frequent changing of the movement direction, with a minimal pulling force, until the obstacle detached. The other involved the maximal pulling force aimed at ripping out the constraint. Tortoises from shrub habitats had more releasing success, used less pulling force and needed shorter time period to release, contrary to tortoises from herbaceous habitats. Although sexes showed similar releasing success, females obtained lower number of direction changes and higher yanking force compared to males, suggesting slightly different liberating strategies between the sexes. For immobilized tortoises without suitable shelter from overheating and dehydration, appropriate behavioural response could be vital, especially during drought years, due to increased physiological stresses. Variability of behavioural patterns among tortoise populations, described in this study, could have an adaptive significance.  相似文献   

3.
Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate‐mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range‐expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body‐size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species (‘mixed’ shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in ‘mixed’ shoals attaining larger body‐sizes over the season than those in ‘tropical‐only’ shoals. This benefit in terms of population body‐size distributions was accompanied by greater social cohesion of ‘mixed’ shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate‐induced range expansion of coral reef fishes.  相似文献   

4.
5.
Morphology can contain valuable information about the ecological performance of reef fishes, but it has rarely been used in combination with social traits. Social behavior is known to influence the ecological role of fishes; however, the ecological basis for pairing in reef fishes is not well understood. Field observations of 2,753 individuals, in 47 species in six families of biting reef fishes (Acanthuridae, Chaetodontidae, Kyphosidae, Labridae, Pomacanthidae, Siganidae), were used in combination with six morphological measurements, to examine the morphology of fishes in different social systems. A principal components analysis of morphological traits segregated species with high proportions of pairing individuals from non-pairing species along principal component 1, explaining 40.8 % of the variation. Pairing species were characterized by large eyes, concave foreheads, pointed snouts, deep bodies, and small maximum sizes. There was a significant positive relationship between these morphological traits (i.e., scores on PC1) and the prevalence of pairing within the Chaetodontidae (r 2 = 0.59; P = 0.026), Siganidae (r 2 = 0.72; P = 0.004), and Acanthuridae (r 2 = 0.82; P < 0.001). This was consistent when traits were corrected for phylogenetic effects. No pattern was evident in the scarine Labridae (r 2 = 0.15; P = 0.17). The morphological characteristics found among pairing species suggest that pairing species share common ecological traits, including foraging for small prey items in micro-topographically complex environments such as reef crevices. These ecological traits may have played a role in the evolution of pairing behavior and subsequently led to the development of reproductive patterns based on monogamy.  相似文献   

6.
Increased frequency of disturbances and anthropogenic activities are predicted to have a devastating impact on coral reefs that will ultimately change the composition of reef associated fish communities. We reviewed and analysed studies that document the effects of disturbance‐mediated coral loss on coral reef fishes. Meta‐analysis of 17 independent studies revealed that 62% of fish species declined in abundance within 3 years of disturbances that resulted in >10% decline in coral cover. Abundances of species reliant on live coral for food and shelter consistently declined during this time frame, while abundance of some species that feed on invertebrates, algae and/or detritus increased. The response of species, particularly those expected to benefit from the immediate loss of coral, is, however, variable and is attributed to erratic replenishment of stocks, ecological versatility of species and sublethal responses, such as changes in growth, body condition and feeding rates. The diversity of fish communities was found to be negatively and linearly correlated to disturbance‐mediated coral loss. Coral loss >20% typically resulted in a decline in species richness of fish communities, although diversity may initially increase following small declines in coral cover from high coverage. Disturbances that result in an immediate loss of habitat complexity (e.g. severe tropical storms), have a greater impact on fishes from all trophic levels, compared with disturbances that kill corals, but leave the reef framework intact (e.g. coral bleaching and outbreaks of Acanthaster planci). This is most evident among small bodied species and suggests the long‐term consequences of coral loss through coral bleaching and crown‐of‐thorn starfish outbreaks may be much more substantial than the short‐term effects currently documented.  相似文献   

7.
Gliotoxin (GT) is the most important epidithiodioxopiperazine (ETP)‐type fungal toxin. GT was originally isolated from Trichoderma species as an antibiotic substance involved in biological control of plant pathogenic fungi. A few isolates of GT‐producing Trichoderma virens are commercially marketed for biological control and widely used in agriculture. Furthermore, GT is long known as an immunosuppressive agent and also reported to have anti‐tumour properties. However, recent publications suggest that GT is a virulence determinant of the human pathogen Aspergillus fumigatus. This compound is thus important on several counts – it has medicinal properties, is a pathogenicity determinant, is a potential diagnostic marker and is important in biological crop protection. The present article addresses this paradox and the ecological role of GT. We discuss the function of GT as defence molecule, the role in aspergillosis and suggest solutions for safe application of Trichoderma‐based biofungicides.  相似文献   

8.
9.
The microbiome and its cross‐talk with the brain have drawn increasing attention lately, since imbalances in the gut microbiota's composition may result in pathogenic dysfunctions affecting brain functioning up to development of neurodegenerative and mental diseases. The current Editorial discusses a study by Gao and coworkers in the current issue of the Journal of Neurochemistry in which the authors use a model of antibiotic‐induced dysbiosis ‐ targeted infusion of antibiotics into the gut ‐ to assess if microbiotic metabolites exert effects on local neurotransmitter expression or contribute to the gut‐brain axis. The authors mechanistically link distal ileal infusion of antibiotics with a change in the levels of microbial metabolites that affect the expression of neurotransmitters in the brain and thereby can participate in the fine‐tuning of the hypothalamic functions, including regulation of visceral and neuroendocrine processes, stress responses, mood and anxiety. Their study thus represents an important step towards our understanding of the brain‐gut axis, with the potential to advance therapeutics.

  相似文献   


10.
Current climate change has raised concerns over the fate of the stenothermal Antarctic marine fauna (animals that evolved to live in narrow ranges of cold temperatures). The present paper focuses on Notothenioidei, a taxonomic group that dominates Antarctic fish. Notothenioids evolved in the Southern Ocean over the last 20 million years, providing an example of a marine species flock with unique adaptations to the cold at morphological, physiological and biochemical levels. Their phenotypic modifications are often accompanied by ‘irreversible’ genomic losses or gene amplifications. On a micro‐evolutionary scale, relatively ‘shallow’ genetic variation is observed, on account of past fluctuations in population size, and a significant genetic structure is evident, suggesting low population connectivity. These features suggest that Antarctic fish might have relatively little potential to adapt to global warming, at least at a genetic level. The extent of their phenotypic plasticity, which is evident to some degree, awaits further research.  相似文献   

11.
12.
13.
Biodiversity and biodiversity politics Extrapolations for a range of indicators suggest that based on current trends, pressures on biodiversity will continue to increase (Global Biodiversity Outlook 4, 2014). Since services of nature, like fertile soil, clear water and clean air are achieved by consortia of organisms rather than by individual species, they are already endangered. This holds, in spite of the fact, that only 10% of the earth's organisms are known to science and that therefore the loss caused by global change cannot be reliably quantified. Today, science develops new methods for recording consortia of coexisting organisms in a habitat. With the Convention on Biological Diversity, biodiversity has become a matter of politics which is welcome with respect to species and habitat conservation, but the concern of biopiracy creates bureaucratic hurdles hindering research. The most recent achievement is IPBES (Intergovernmental Platform on Biodiversity and Ecosystem Services, Bonn), which strives to bring more science into biodiversity politics.  相似文献   

14.
How, and where, did the first cells on Earth grow? The last universal common ancestor of all cells (Luca) was long considered as the common ancestor of bacteria, archaea and eukaryotes. New trees of life have a host for the origin of mitochondria (of eukaryotes) branching within the archaea, making Luca the common ancestor of bacteria and archaea. New comparative genomic investigations have reconstructed Luca's microbial ecology. The 355 protein families that trace back to Luca by phylogenetic criteria describe Luca as anaerobic, CO2 ‐ and N2 ‐fixing, H2 ‐dependent and thermophilic. Luca's biochemistry was replete with FeS clusters and radical reaction mechanisms, its cofactors reveal an essential role for transition metals in its metabolism. Luca lived in an anaerobic geochemical active environment rich in H2 , CO2 and iron. This lifestyle is similar to modern acetogens (bacteria) and methanogens (archaea), the physiologically most ancient microbes.  相似文献   

15.
16.
The perennial grass triploid Miscanthus × giganteus is a promising renewable bioenergy feedstock in the United States and Europe. Originating from eastern Asia, this species is a sterile hybrid cross between M. sinensis and M. sacchariflorus. While research has begun to examine the impacts of M. sinensis and triploid M. × giganteus on the landscape, M. sacchariflorus has been largely overlooked in the peer‐reviewed literature. This review article discusses the origin, uses, distribution, and invasive potential of M. sacchariflorus. M. sacchariflorus is capable of producing high yields (10.7 t DM ha?1 yr?1), generally does not reproduce by seed, and can be challenging to establish due to poor cold tolerance, likely due to the limited germplasm used in evaluations. However, M. sacchariflorus has abundant and aggressively spreading rhizomes, which underscores its invasive risk. In the United States, it is listed as escaped from cultivation in at least eight states, primarily in the Midwest, although it is likely that not all populations have been reported. As such, it is essential to generate a comprehensive dataset of all known M. sacchariflorus populations and monitor any continued spread of this species.  相似文献   

17.
Priest  M. A.  Simpson  S. D.  & Dytham  C. 《Journal of fish biology》2003,63(S1):254-255
The Indo‐Pacific consists of extensive continuous coastlines and many island groups of varying sizes and isolation. The species ranges of coral reef fishes vary enormously from Indo‐Pacific wide to highly endemic. There is also great variation in the early life history characteristics of coral reef fishes ( e.g . pelagic larval durations, spawning strategies and swimming abilities). We use individual‐based models (IBMs) to simulate the dispersal of coral reef fishes in the Indo‐Pacific. The development of dispersal strategies is explored based on ecological and geographical constraints. Simulations are presented for climatic and anthropogenically‐induced events.  相似文献   

18.
Simpson  S. D.  Dytham  C.  & Meekan  M. G. 《Journal of fish biology》2003,63(S1):241-241
We housed offspring from northern (70° N) and southern (60° N) coastal cod ( Gadus morhua ) together in a 'common garden' rearing experiment at a temperature and light regime representative of the southern population. Through a more active feeding behaviour and a higher success, the northern cod achieved a larger food share and a higher growth rate and condition than their southern conspecifics. This is contrary to what was demonstrated by field data of fish from their natural habitats. The northern cod also allocated more energy to the liver throughout the experiment. Our results agree with the theory of countergradient variation, suggesting that genetic influences on growth and condition have been opposed by environmental constraints in their natural habitat. The observation that the offspring from these populations differ in behavior and growth when housed together support the idea that the growth response to selection would be through a behavioral response.
The field data suggest that density‐dependent population process and high juvenile density relative to prey limit the growth and condition in the wild and not necessarily the length of the growth season per se as assumed in the literature. The topographic distance (over 2000 km) limit mixing of early life stages of cod from the northern and southern population, and the different environmental stimuli (seasonality, temperature, food‐web interactions and habitat heterogeneity) in north and south are likely to evolve genetic differences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号