首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
Summary To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the -subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the -subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.Supported by Grant AM 17047 from NIH and by the Veterans Administration  相似文献   

2.
Summary An antibody to the 96 kD -subunit of the Na+, K+ -ATPase from Bufo marinus has been used in immunostaining rat kidney and salivary glands. Intense staining was observed on basolateral membranes of distal tubules of the kidney and striated ducts of the three major salivary glands. Less intense staining was seen on the basolateral membranes of parotid acinar cells, but no staining was seen on the acinar cells of submandibular or sublingual glands. These sites of staining have been shown, by other methods, to posses substantial Na+, K+ -ATPase, indicating that the antibody recognizes antigenic determinants of the sodium pump highly conserved in the course of evolution. In addition, staining with this antibody was observed at the apical region of cells of the proximal straight tubule and of the papillary collecting duct in the kidney. Absorption studies suggest that the apical antigenic determinants are the same or closely related to each other but are distinct from basolateral antigenic determinants.  相似文献   

3.
The kidney is an organ playing an important role in ion regulation in both freshwater (FW) and seawater (SW) fish. The mechanisms of ion regulation in the fish kidney are less well studied than that of their gills, especially at the level of transporter proteins. We have found striking differences in the pattern of Na+/K+/2Cl- cotransporter (NKCC) expression between species. In the killifish kidney, NKCC is apically localized in the distal and collecting tubules and basolaterally localized in the proximal tubules. However, in the SW killifish gill, NKCC is basolaterally co-localized with Na+/K+-ATPase, whereas in FW, NKCC immunoreactivity is primarily apical, although still colocalized within the same mitochondria-rich cell with basolateral Na+/K+-ATPase. Rainbow trout kidney has NKCC only in the apical membrane of the distal and collecting tubules in both environments, with no signal being detected in the proximal tubule. On the other hand, in the trout gill, NKCC is found basolaterally in both FW and SW environments. An important observation is that, in the gills of rainbow trout, the trailing edge of the filament possesses mostly Na+/K+-ATPase-positive but NKCC-negative mitochondria-rich cells, whereas in the region between and at the roots of the gill lamellae, most mitochondria-rich cells exhibit both Na+/K+-ATPase- and NKCC-positive immunoreactivity. These results suggest that the differential localization of transporters between the two species represents differences in function between these two euryhaline fishes with different life histories and strategies. Funding for this research was provided by NSERC Discovery Grants to G.G.G. and W.S.M., an Alberta Ingenuity Fund PDF, and a fellowship from the NSERC Research Capacity Development Grant to F.K.  相似文献   

4.
The kidney plays a crucial role in the regulation of water and ion balances in both freshwater and seawater fishes. However, the complicated structures of the kidney hamper comprehensive understanding of renal functions. In this study, to investigate the structure of sterically disposed renal tubules, we examined spatial, cellular, and intracellular localization of Na+/K+-ATPase in the kidney of the Japanese eel. The renal tubule was composed of the first (PT-I) and second (PT-II) segments of the proximal tubule and the distal tubule (DT), followed by the collecting ducts (CDs). Light microscopic immunocytochemistry detected Na+/K+-ATPase along the renal tubules and CD; however, the subcellular distribution of the Na+/K+-ATPase immunoreaction varied among different segments. Electron microscopic immunocytochemistry further revealed that Na+/K+-ATPase was distributed on the basal infoldings of PT-I, PT-II, and DT cells. Three-dimensional analyses showed that the renal tubules meandered in a random pattern through lymphoid tissues, and then merged into the CD, which was aligned linearly. Among the different segments, the DT and CD cells showed more-intense Na+/K+-ATPase immunoreaction in freshwater eel than in seawater-acclimated eel, confirming that the DT and CD segments are important in freshwater adaptation, or hyperosmoregulation. (J Histochem Cytochem 58:707–719, 2010)  相似文献   

5.
《Insect Biochemistry》1991,21(7):749-758
The present study confirms previous reports of the presence of (Na+ + K+)-ATPase and anion-stimulated ATPase activity in Malpighian tubules of Locusta. In addition, the presence of a K+-stimulated, ouabain-insensitive ATPase activity has been identified in microsomal fractions. Differential and sucrose density-gradient centrifugation of homogenates has been used to separate membrane fractions which are rich in mitochondria, apical membranes and basolateral membranes; as indicated by the presence of succinate dehydrogenase and the presence or absence of non-specific alkaline phosphatase activity, respectively. Relatively high specific (Na+ + K+)-ATPase activity was associated with the basolateral membrane-rich fractions with only low levels of this activity being associated with the apical membrane-rich preparation. K+-stimulated ATPase activity was also associated, predominantly, with the basolateral membrane-rich fractions. However, comparison of the distribution of this activity with that of the (Na+ + K+)-ATPase suggests that the two enzymes did not co-separate. The possibility that the K+-stimulated ATPase was not associated with the basolateral plasma membrane is discussed.Anion-stimulated ATPase activity was found in the apical and basolateral membrane-rich fractions and in the fraction contaning mainly mitochondria. Nevertheless, the fact that this bicarbonate-stimulated activity did not co-separate with succinate dehydrogenase activity suggests that it was not exclusively mitochondrial in origin. These results are consistent with physiological studies indicating a basolateral (Na+ + K+)-ATPase but do not support the K+-stimulated ATPase as a candidate for the apical electrogenic pump. The possible role of the bicarbonate-stimulated ATPase activity in ion transport across both the basolateral and apical cell membranes is discussed.  相似文献   

6.
Abstract A strontium capture method, using p-nitrophenyl phosphate as substrate, was used to determine the subcellular localization of (Na+ + K+)-ATPase activity in Malpighian tubules of Locusta migratoria L. Ultrastructural studies revealed that (Na+ + K+)-ATPase activity was restricted to the basolateral plasma membranes with little evidence of activity associated with the apical microvilli. In contrast, alkaline phosphatase activity was specifically associated with the apical cell membrane. Biochemical assays of fixed and non-fixed tubule homogenates were used to evaluate the p-nitrophenyl phosphate-strontium procedure for localization of the phosphatase component of (Na+ + K+)-ATPase. No significant potassium-dependent, ouabain-sensitive p-nitrophenyl phosphatase activity was demonstrated in homogenates under conditions necessary for the cytochemical procedure, viz fixation, pH 9.0 and the presence of strontium. The significance of the biochemical results are discussed in relation to the validity of such cytochemical techniques for (Na+ + K+)-ATPase localization.  相似文献   

7.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35–50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

8.
The acinous salivary glands of the cockroach (Periplaneta americana) consist of four morphologically different cell types with different functions: the peripheral cells are thought to produce the fluid component of the primary saliva, the central cells secrete the proteinaceous components, the inner acinar duct cells stabilize the acini and secrete a cuticular, intima, whereas the distal duct cells modify the primary saliva via the transport of water and electrolytes. Because there is no direct information available on the distribution of ion transporting enzymes in the salivary glands, we have mapped the distribution of two key transport enzymes, the Na+/K+-ATPase (sodium pump) and a vacuolar-type H+-ATPase, by immunocytochemical techniques. In the peripheral cells, the Na+/K+-ATPase is localized to the highly infolded apical membrane surface. The distal duct cells show large numbers of sodium pumps localized to the basolateral part of their plasma membrane, whereas their highly folded apical membranes have a vacuolar-type H+-ATPase. Our immunocytochemical data are supported by conventional electron microscopy, which shows electrondense 10-nm particles (portasomes) on the cytoplasmic surface of the infoldings of the apical membranes of the distal duct cells. The apically localized Na+/K+-ATPase in the peripheral cells is probably directly involved in the formation of the Na+-rich primary saliva. The latter is modified by the distal duct cells by transport mechanisms energized by the proton motive force of the apically localized V-H+-ATPase.  相似文献   

9.
The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex with H+-ATPases in proximal tubule and intercalated cells but that prorenin has no acute effect on H+-ATPase activity in intercalated cells.  相似文献   

10.
The structure of the kidney and the localization of Na+, K+-ATPase (NKA) immunopositive cells were examined throughout the postembryonic development of the Persian sturgeon, Acipenser persicus, from newly hatched prelarvae (10 mm) to 20 days post hatch (20 DPH) larvae (31 mm). Investigations were conducted through histology and immunohistochemistry by using the light and immunofluorescence microscopy. The pronephros was observed in newly hatched prelarvae. The cells lining the distal pronephric tubules and their collecting ducts showed laterally expressed NKA immunofluorescence that later extended throughout the whole cytoplasm. Mesonephrogenous placodes and pre-glomeruli were distinguished at 2 DPH along the collecting ducts posteriorly. Their tubules were formed and present in kidney mesenchyma, differentiated into neck, proximal, distal and collecting segments at 7 DPH when NKA immunopositive cells were observed. Their distal and collecting tubules showed an increasing immunofluorescence throughout their cytoplasm while the glomeruli remained unstained. From D 9 to D 17, the epithelial layer of pronephric collecting duct changed along the mesonephros to form ureters. Ureters, possessing isolated strong NKA immunopositive cells, appeared as two sac-like structures hanging under the trunk kidney. Since NKA immunopositive cells were not observed on the tegument or along the digestive tract of newly hatched prelarva, and also the gills are not formed yet, the pronephros is the only osmoregulatory organ until 4 DPH. At the larval stage, the pronephros and mesonephros are functional osmoregulatory organs and actively reabsorb necessary ions from the filtrate.  相似文献   

11.
Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.  相似文献   

12.
In different species and tissues, a great variety of hormones modulate Na+,K+-ATPase activity in a short-term fashion. Such regulation involves the activation of distinct intracellular signaling networks that are often hormone- and tissue-specific. This minireview focuses on our own experimental observations obtained by studying the regulation of the rodent proximal tubule Na+,K+-ATPase. We discuss evidence that hormones responsible for regulating kidney proximal tubule sodium reabsorption may not affect the intrinsic catalytic activity of the Na+,K+-ATPase, but rather the number of active units within the plasma membrane due to shuttling Na+,K+-ATPase molecules between intracellular compartments and the plasma membrane. These processes are mediated by different isoforms of protein kinase C and depend largely on variations in intracellular sodium concentrations.  相似文献   

13.
Proteinase-activated receptor 2 (PAR2) is a G protein-coupled membrane receptor that is activated upon cleavage of its extracellular N-terminal domain by trypsin and related proteases. PAR2 is expressed in kidney collecting ducts, a main site of control of Na+ and K+ homeostasis, but its function remains unknown. We evaluated whether and how PAR2 might control electrolyte transport in collecting ducts, and thereby participate in the regulation of blood pressure and plasma K+ concentration. PAR2 is expressed at the basolateral border of principal and intercalated cells of the collecting duct where it inhibits K+ secretion and stimulates Na+ reabsorption, respectively. Invalidation of PAR2 gene impairs the ability of the kidney to control Na+ and K+ balance and promotes hypotension and hypokalemia in response to Na+ and K+ depletion, respectively. This study not only reveals a new role of proteases in the control of blood pressure and plasma potassium level, but it also identifies a second membrane receptor, after angiotensin 2 receptor, that differentially controls sodium reabsorption and potassium secretion in the late distal tubule. Conversely to angiotensin 2 receptor, PAR2 is involved in the regulation of sodium and potassium balance in the context of either stimulation or nonstimulation of the renin/angiotensin/aldosterone system. Therefore PAR2 appears not only as a new actor of the aldosterone paradox, but also as an aldosterone-independent modulator of blood pressure and plasma potassium.  相似文献   

14.
Microvillar cells (MCs) have been identified in the olfactory epithelium of various mammalian species from rodents to humans. Studies on properties and functions of MCs to date have yielded partially controversial results, supporting alternatively an epithelial or a neuronal nature of these cells. In the present study, single and double immunolabeling investigations were carried out using antibodies against cytoskeletal and integral membrane proteins in order to further characterize MCs in rat and mouse olfactory epithelium. Application of antibodies against ankyrin (ANK), a protein that links integral membrane proteins to the submembrane cytoskeleton, led to intense labeling of the basolateral membranes of numerous cells with characteristic MC morphology. ANK-immunoreactive (ir) cells bore an apical tuft of -actin-ir microvilli, were filled with cytokeratin 18 (CK18)-ir filamentous network, and extended a basal process that appeared to end above the basal membrane. Immunoreactions for villin, an actin-crosslinking protein particularly prominently expressed in brush cells in the gastrointestinal and respiratory tract epithelia, and for the -subunit of sodium-potassium ATPase (Na+, K+-ATPase), revealed that ANK-ir MCs fall into two subpopulations. The less frequent type I MCs displayed villin immunoreactivity in their apical microvilli and underneath the basolateral membranes; the more numerous type II MCs were negative for villin but possessed intense basolateral immunoreactivity for Na+, K+-ATPase. Strong reactivity for the epithelial-type integral membrane protein of adherens junctions, E-Cadherin, was localized in basolateral membranes of both types of MCs. Our results support an epithelial nature of ANK-ir MCs in rat and mouse olfactory epithelium. Type I MCs strongly resemble brush cells in their immunocytochemical characteristics, namely, their ANK reactivity, CK18 reactivity, and villin reactivity. The intense Na+, K+-ATPase reactivity of type II MCs implicates these cells in transport processes.  相似文献   

15.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

16.
Prostagladin A2, which prevents intestinal ulcers produced by administration of nonsteroidal antiinflammatory compounds such as indomethacin, inhibited the Na+,K+-ATPase activity in basolateral plasma membrane of rat intestine significantly. Prostaglandin A2 inhibited mainly the Na+-dependent phosphorylation step in the overall reaction of Na+,K+-ATPase. This decrease of the Na+,K+-ATPase activity by prostaglandin A2 was due to the decrease of Vmax of the enzyme and of the affinity of the enzyme for Na+. It was also suggested that the presence of both Δ5,6 and Δ10,11 structure of prostaglandin A2 may be necessary for the inhibition of the Na+,K+-ATPase activity.  相似文献   

17.
We demonstrated recently that in renal epithelial cells from collecting ducts of Madin-Darby canine kidneys (MDCK), Na+,K+,Cl cotransport is inhibited up to 50% by ATP via its interaction with P2Y purinoceptors (Biochim. Biophys. Acta 1998. 1369:233–239). In the present study we examined which type of renal epithelial cells possesses the highest sensitivity of Na+,K+,Cl cotransport to purinergic regulation. We did not observe any effect of ATP on Na+,K+,Cl cotransport in renal epithelial cells from proximal and distal tubules, whereas in renal epithelial cells from rabbit and rat collecting ducts ATP decreased the carrier's activity by ∼30%. ATP did not affect Na+,K+,Cl cotransport in C7 subtype MDCK cells possessing the properties of principal cells but led to ∼85% inhibition of this carrier in C11-MDCK cells in which intercalated cells are highly abundant. Both C7- and C11-MDCK exhibited ATP-induced IP3 and cAMP production and transient elevation of [Ca2+] i . In contrast to the above-listed signaling systems, ATP-induced phosphorylation of ERK and JNK MAP kinases was observed in C11-MDCK only. Thus, our results reveal that regulation of renal Na+,K+,Cl cotransport by P2Y receptors is limited to intercalated cells from collecting ducts and indicate the involvement of the MAP kinase cascade in purinergic control of this ion carrier's activity. Received: 10 June 1999/Revised: 23 August 1999  相似文献   

18.
Summary The ultrastructural localizations of alkaline phosphatase (ALPase) and of Na+–K+-dependent adenosine triphosphatase (Na+–K+-ATPase) were studied in the placental labyrinth of the cat during the last days of gestation. ALPase activity could be detected in the syncytiotrophoblast but was absent from maternal tissues. Enzyme activity was observed only along plasma membranes of microvilli and absorption tubules on the maternal surface of the syncytium and also on the podocytes-like cytoplasmic processes of the fetal face. The localization of the Na+–K+-ATPase activity as obtained with the method of Ernst was identical with that of ALPase. This activity was not very ouabaine sensitive or K+ dependent, but was almost completely inhibited by levamisole. The strong ALPase activity of the syncytiotrophoblast does not allow a specific detection of Na+–K+-ATPase. However, the localization of these enzymes activities on syncytiotrophoblast surfaces directly related to fetal and maternal capillaries could suggest that these surfaces are associated with transport mechanisms of the trophoblast.
Activité phosphatase alcaline dans le labyrinthe du placenta de chatte, et problème de la localisation de l'ATPase de transport: étude ultrastructurale
Résumé Les localisations de la phosphatase alcaline (ALPase) et de l'adénosine triphosphatase Na+–K+-dependante (Na+–K+-ATPase) ont été recherchées dans le labyrinthe du placenta de chatte en fin de gestation. L'activité ALPase est localisée de manière discontinue le long de la membrane plasmique du syncytiotrophoblaste: microvillosités et tubules d'absorption de la face maternelle, digitations cytoplasmiques à allure podocytique de la face foetale. La localisation de l'activité Na+–K+-ATPase par la méthode de Ernst est identique à celle de l'ALPase. Cette activité, très peu sensible à la ouabaïne et à l'absence de K+, est presque totalement inhibée par le tétramisole. Cette présence importante d'activité ALPase empêche la mise en évidence spécifique de la Na+–K+-ATPase. La localisation de ces enzymes dans des zones en rapport avec les capillaires foetaux et maternels, permet de soutenir la thèse d'une spécialisation de ces zones dans les mécanismes de transport.
  相似文献   

19.
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4 -.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.  相似文献   

20.
Previous work has shown that cholesterol levels are modulated in plasma membranes from some but not all tissues of poikilotherms over the course of temperature change. To gain a better understanding of tissue and membrane domain-specific cholesterol function during thermal adaptation we examined effects of cholesterol on membrane physical properties and (Na+,K+)-ATPase in native and cholesterol-enriched basolateral membranes from kidney and intestine of thermally acclimated trout (Oncorhynchus mykiss). Membrane order (as indicated by fluorescence depolarization studies) is increased, whereas its thermal sensitivity is decreased by elevated cholesterol levels in mem branes with relatively low endogenous amounts of cholesterol (intestinal membranes and renal membranes from cold-acclimated fish). Thermal sensitivities of membrane order in kidney are 1.5-fold higher in native compared with cholesterol-enriched basolateral membranes. For renal plasma membranes, (Na+,K+)- ATPase activity is lowest near the transition between native and surpraphysiological cholesterol levels. Endogenous cholesterol levels (relative to phospholipid contents) in intestinal basolateral membranes from cold-acclimated fish vary more than 1.5-fold; membranes with cholesterol/phospholipid molar ratios of 0.3 have activities of (Na+,K+)-ATPase that are twofold lower than native membranes having a ratio of 0.2. These results suggests that maintenance of cholesterol levels in intestinal basolateral membranes during thermal acclimation may ensure sufficient activity of (Na+,K+)-ATPase. Membrane function in kidney, with its high native cholesterol content, is less likely to be affected by temperature change. Accepted: 21 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号