首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary— In the present study an attempt was made to localize cytochemically ATPase activity in the epidermis of Pelobates syriacus during its metamorphic cycle. In the epidermis of the legless tadpole, evidence for ATPase activity was confined intracellularly in two cell types: on the membranes of vesicles in the vesicle cells, and in the ER and Golgi inside the granular cell. This state continued throughout most of the tadpole life during the 2- and 4-limbed stages. This is possibly an indication for either Ca2+ - or Mg2+-ATPases. Only in later stages, preceding metamorphic climax, did Na+-K+-ATPase activity shift to the baso-lateral cell membranes bordering with the intercellular spaces. This continued after metamorphic climax in the juvenile toadlets, diminishing later in the adult stage.  相似文献   

2.
(Na+, K+)-ATPase (EC 3.6.1.3) from kidney is more sensitive to inhibition by vanadate than red cell (Na+,K+)-ATPase. The difference appears to be in the apparent affinities of the two enzymes for K+ and Na+ at sites where K+ promotes and Na+ opposes vanadate binding. As a result of Na+-K+ competition at these sites, reversal of vanadate inhibition was accomplished at lower Na+ concentrations in red cell than in kidney (Na+,K+)-ATPase. It is possible that vanadate could selectively regulate Na+ transport in the kidney.  相似文献   

3.
Interactions between integral proteins of the plasma membrane and the cytoskeleton may be important for localizing certain membrane proteins in a nonrandom fashion at specialized domains of the cell surface. Here, we show that ankyrin, the key protein for the linkage of the erythrocyte anion exchanger (band 3) to the spectrin-based membrane cytoskeleton, is also present in kidney distal tubular cells where ankyrin is precisely colocalized with Na+,K+-ATPase. Both proteins are confined to the basolateral plasma membrane and are absent from the apical membrane, the junctional complex and the membrane surface that contacts the basal lamina. Purified Na+,K+-ATPase of sheep and pig kidney contains a binding site for erythrocyte ankyrin as demonstrated by immunoprecipitation experiments. A band 3-like binding site for ankyrin is likely, since binding of ankyrin to Na+,K+-ATPase could be inhibited in a competitive fashion by the isolated cytoplasmic domain of erythrocyte band 3.  相似文献   

4.
In this work, we present evidence in agreement with the hypothesis that there exist two Na+-stimulated ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells: (1) (Na+ + K+)-ATPase activity, which is inhibited by ouabain and by treating the membranes with trypsin, is insensitive to furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 1.6; (2) the Na+-ATPase activity, which is insensitive to ouabain and to trypsin treatment, is inhibited by furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 0.4.  相似文献   

5.
Na+,K+-ATPase was localized at the ultrastructural level in rat and rabbit kidney medulla. The cytochemical method for the K+-dependent phosphatase component of the enzyme, using p-nitrophenylphosphate (NPP) as substrate, was employed to demonstrate the distribution of Na+, K+- ATPase in tissue-chopped sections from kidneys perfusion-fixed with 1% paraformaldehyde-0.25% glutaraldehyde. In other outer medulla of rat kidney, ascending thick limbs (MATL) were sites of intense K+-dependent NPPase (K+-NPPase) activity, whereas descending thick limbs and collecting tubules were barely reactive. Although descending thin limbs (DTL) of short loop nephrons were unstained, DTL from long loop nephrons in outer medulla were sites of moderate K+-NPPase activity. In rat inner medulla, DTL and ascending thin limbs (ATL) were unreactive for K+-NPPase. In rabbit medulla, only MATL were sites of significant K+-NPPase activity. The specificity of the cytochemical localization of Na+,K+-ATPase at reactive sites in rat and rabbit kidney medulla was demonstrated by K+-dependence of reaction product deposition, localization of reaction product (precipitated phosphate hydrolyzed from NPP) to the cytoplasmic side of basolateral plasma membranes, insensitivity of the reaction to inhibitors of nonspecific alkaline phosphatase, and, in the glycoside-sensitive rabbit kidney, substantial inhibition of staining by ouabain. The observed pattern of distribution of the sodium transport enzyme in kidney medulla is particularly relevant to current models for urine concentration. The presence of substantial Na+,K+-ATPase in MATL is consistent with the putative role of this segment as the driving force for the countercurrent multiplication system in the outer medulla. The absence of significant activity in inner medullary ATL and DTL, however, implies that interstitial solute accumulation in this region probably occurs by passive processes. The localization of significant Na+,K+-ATPase in outer medullary DTL of long loop nephrons in the rat suggests that solute addition in this segment may occur in part by an active salt secretory mechanism that could ultimately contribute to the generation of inner medullary interstitial hypertonicity and urine concentration.  相似文献   

6.
1. Extensive treatment of rabbit kidney microsomes with phosphatidylinositol-specific phospholipase C under various conditions never resulted in more than 75% hydrolysis of the substrate. 2. The non-degraded fraction of the phosphatidylinositol (10–12 nmol per mg microsomal protein) could be recovered only by an acidic extraction procedure. 3. The (Na+ + K+)-ATPase activity found in those membranes was not affected by this treatment. 4. Complete degradation of phosphatidylinositol could be easily achieved when the phospholipase was applied to rat liver microsomes which do not contain any detectable (Na+ + K+)-ATPase activity. 5. It is concluded that in rabbit kidney microsomes a close association exist between the (Na+ + K+)-ATPase and that fraction of the phosphatidylinositol that is directly involved in the maintenance of its activity.  相似文献   

7.
8.
A modified cytochemical assay for [Na-K]ATPase in cryostat sections of kidney was further characterized and used to quantify activity in seven functionally distinct sites along the rat nephron. The activity of [Na-K]ATPase was defined as the difference in ATPase activity in specifically identified tubules contained in serial sections incubated with and without ouabain. Preincubation of sections with ouabain was required for maximal inhibition of [Na-K]ATPase activity in several distal sites. The concentration of ouabain necessary for maximal inhibition of activity was 3.0 mM and half-maximal inhibition was obtained in all regions with 30-100 microM ouabain. In distal sites, [Na-K]ATPase formed a higher proportion of total ATPase activity (60-80 per cent) than in proximal sites (20-40 per cent). Enzyme activity was quantified using two different methods. The first measured activity over the basal region of tubules and gave an index of the concentration of [Na-K]ATPase over the basal lateral infoldings of cells composing the tubule. The second read activity over the entire cross section of tubules and provided an estimate of [Na-K]ATPase per length of tubule. The highest activities over the basal basal region were obtained from tubules of the distal nephron including the inner (MALin) and outer (MALout) medullary ascending limb, distal convoluted tubule (DCT) and connecting segment (CS). Lower activities were obtained in proximal convoluted (PCT) tubules, proximal straight (PS) tubules and the papillary collecting duct (PD). Distal convoluted tubules contained the highest activity per length of tubule. Other sites contained lower levels of activity in the following order: MALin greater than MALout greater than PCT greater than PD greater than PS. The modifications introduced increase the sensitivity and precision of this assay and permit the application of this technique to studies of [Na-K]ATPase activity in the major functional regions of the rat nephron.  相似文献   

9.
Ultrastructural localization of Na+,K+-ATPase in rat ciliary epithelium was investigated quantitatively by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of Na+,K+-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha-subunit of Na+,K+-ATPase in the ciliary body. Gold particles were found mainly on the basolateral surfaces of both the pigmented epithelial (PE) and nonpigmented epithelial (NPE) cells with an approximately twofold higher labeling density in the PE cells. A few gold particles were also found on the apical and ciliary channel surfaces of the PE cells, whereas no significant binding was found on the apical surfaces of the NPE cells. The basolateral surfaces of PE and NPE cells are markedly infolded and are much greater in area than the apical surfaces. This means that Na+,K+-ATPase is almost exclusively located on the basolateral surfaces of both the NPE and PE cells. We suggest that the Na+,K+-ATPase of both the NPE and PE cells play an important role in the formation of aqueous humor.  相似文献   

10.
Na(+),K(+)-ATPase, a basolateral transporter responsible for tubular reabsorption of Na(+) and for providing the driving force for vectorial transport of various solutes and ions, can also act as a signal transducer in response to the interaction with steroid hormones. At nanomolar concentrations ouabain binding to Na(+),K(+)-ATPase activates a signaling cascade that ultimately regulates several membrane transporters including Na(+),K(+)-ATPase. The present study evaluated the long-term effect of ouabain on Na(+),K(+)-ATPase activity (Na(+) transepithelial flux) and expression in opossum kidney (OK) cells with low (40) and high (80) number of passages in culture, which are known to overexpress Na(+),K(+)-ATPase (Silva et al., 2006, J Membr Biol 212, 163-175). Activation of a signal cascade was evaluated by quantification of ERK1/2 phosphorylation by Western blot. Na(+),K(+)-ATPase activity was determined by electrophysiological techniques and expression by Western blot. Incubation of cells with ouabain induced activation of ERK1/2. Long-term incubation with ouabain induced an increase in Na(+) transepithelial flux and Na(+),K(+)-ATPase expression only in OK cells with 80 passages in culture. This increase was prevented by incubation with inhibitors of MEK1/2 and PI-3K. In conclusion, ouabain-activated signaling cascade mediated by both MEK1/2 and PI-3K is responsible for long-term regulation of Na(+) transepithelial flux in epithelial renal cells. OK cell line with high number of passages is suggested to constitute a particular useful model for the understanding of ouabain-mediated regulation of Na(+) transport.  相似文献   

11.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1:200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the alpha-subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the beta-subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.  相似文献   

12.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
Summary To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the -subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the -subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.Supported by Grant AM 17047 from NIH and by the Veterans Administration  相似文献   

13.
Na+ efflux across basolateral membranes of isolated epithelia of frog skin was tested for voltage sensitivity. The intracellular Na+ transport pool was loaded with 24Na from the apical solution and the rate of isotope appearance in the basolateral solution (JNa23) was measured at timed intervals of 30 s. Basolateral membrane voltage was depolarized by either 50 mM K+, 5 mM Ba++, or 80 mM NH+4. Whereas within 30 s ouabain caused inhibition of JNa23, depolarization of Vb by 30-60 mV caused no significant change of JNa23. Thus, both pump-mediated and leak Na+ effluxes were voltage independent. Although the pumps are electrogenic, pump-mediated Na+ efflux is voltage independent, perhaps because of a nonlinear relationship between pump current and transmembrane voltage. Voltage independence of the leak Na+ efflux confirms a previous suggestion (Cox and Helman, 1983. American Journal of Physiology. 245:F312-F321) that basolateral membrane Na+ leak fluxes are electroneutral.  相似文献   

14.
Basolateral membrane vesicles were prepared from purified proximal and distal tubules of the rabbit kidney. The properties of the ATP-dependent Ca2+ transport were investigated. In both membranes, there was a high affinity, ATP-dependent Ca2+ transport system (Km = 0.1 microM). The optimal concentration of Mg2+ was 0.5 mM and the optimal concentration of ATP was 1 mM. The nucleotide specificity and pH dependence of the Ca2+ transport in both membranes were similar. In basolateral membrane vesicles, calmodulin had no effect on Ca2+ transport. However, in basolateral membrane vesicles depleted of calmodulin, exogenous calmodulin increased the Ca2+ transport by increasing maximal velocity. There were no major differences in the properties of the ATP-dependent Ca2+ transport system in these two membranes. These findings are discussed in relation to why parathyroid hormone differentially modulates Ca2+ transport in these two segments of the nephron.  相似文献   

15.
Rabbit renal (Na+ + K+)-ATPase (EC 3.6.1.3) was purified and incorporated into phosphatidylcholine liposomes. Freeze-fracture analysis of the reconstituted system reveals intramembrane particles formed by (Na+ + K+)-ATPase molecules which are randomly distributed on concave and convex fracture faces. The reconstituted (Na+ + K+)-ATPase performs active Na+,K+-transport. The distribution of particles as well as the rate of active transport are directly proportional to the (Na+ + K+)-ATPase protein concentration used for reconstitution, while the total amount of sodium and potassium ions exchanged by ATP per volume vesicle suspension reaches maximum when each vesicle contains on the average more than two particles. (Na+ + K+)-ATPase pretreated with ouabain or vanadate yields the same particle density and vesicle size as control enzyme. However, detergent-denatured enzyme loses its ability to form intramembrane particles or to increase the vesicle size indicating that the lipids surrounding the protein part of the molecule are essential for the reconstitution process. The vesicle diameter increases as a function of the number of particles per vesicle. Histograms of the size distribution become wider with increasing intramembrane particle density and tend to show more than one maximum.  相似文献   

16.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

17.
The ouabain-insensitive, Mg2+-dependent, Na+-stimulated ATPase activity present in fresh basolateral plasma membranes from guinea-pig kidney cortex cells (prepared at pH 7.2) can be increased by the addition of micromolar concentrations of Ca2+ to the assay medium. The Ca2+ involved in this effect seems to be associated with the membranes in two different ways: as a labile component, which can be quickly and easily ‘deactivated’ by reducing the free Ca2+ concentration of the assay medium to values lower than 1 μM; and as a stable component, which can be ‘deactivated’ by preincubating the membranes for periods of 3–4 h with 2 mM EDTA or EGTA. Both components are easily activated by micromolar concentrations of Ca2+. The Ka of the system for Na+ is the same, 8 mM, whether only the stable component or both components, stable and labile, are working. In other words, the activating effect of Ca2+ on the Na+-stimulated ATPase is on the Vmax, and not on the Ka of the system for Na+. The activating effect of Ca2+ may be related to some conformational change produced by the interaction of this ion with the membranes, since it can also be obtained by resuspending the membranes at pH 7.8 or by ageing the preparations. Changes in the Ca2+ concentration may modulate the ouabain-insensitive, Na+-stimulated ATPase activity. This modulation could regulate the magnitude of the extrusion of Na+ accompanied by Cl? and water that these cells show, and to which the Na+-ATPase has been associated as being responsible for the energy supply of this mode of Na+ extrusion.  相似文献   

18.
This study was designed to establish the properties of liver plasma membranes (LPM) Na+,K+-ATPase in the hamster and to determine whether a similar assay may be used to measure enzyme activity in the hamster and in the rat. Maximal Na+,K+-ATPase activity was obtained when the assay medium contained 5 mM Mg APT2- with or without 1 mM free Mg2+, 120 mM Na+, 12,5 mM K+. The incubation must be performed at 37 degrees C, pH 7.4. In the absence of free Mg2+, the saturation curve with respect to the substrate Mg ATP2- resulted in biphasic complex kinetics with a maximal activity at a substrate concentration of 5 mM. In the presence of 1 mM free Mg2+ activation of Na+,K+-ATPase and modification of the kinetics were observed: the biphasic curve tended to disappear and to become of the Michaelis-Menten type. The apparent Km for Mg APT2- was 0.36 mM and the Vmax 34.5 mumol.h-1.mg protein-1. In the presence of 10 mM free Mg2+ a decrease in the Vmax was observed without any effect on the apparent Km for Mg APT2-. It is concluded that the same incubation medium may be used to assay LPM N+,K+-ATPase from hamster and rat and that the addition of 1 mM free Mg2+ to the incubation medium is recommended to obtain Michaelis-Menten kinetics in order to eliminate complex kinetics due to the absence of free Mg2+.  相似文献   

19.
The Na+/K+-ATPase was localized using purified specific antibodies, on the basolateral membranes of rat thyroid epithelial cells and of cultured porcine thyroid cells, by immunofluorescence and immunoelectron microscopy. No staining was observed on the apical membranes. When cultured cells formed monolayers, with their apical pole in contact with the culture medium, 22Na+ uptake was inhibited by amiloride. Inhibition was dependent upon extracellular Na+ concentration, half maximal inhibition was obtained with 0.7 microM amiloride in the presence of 5 mM Na+. Ouabain was ineffective on Na+ uptake into intact monolayers. A brief treatment of the monolayers with ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) opened the tight junctions and allowed the access of ouabain to the basal pole of the cells. In this condition ouabain increased Na+ uptake. When cells were reorganized into follicle-like structures, with their basal pole in contact with the culture medium, Na+ uptake was not modified by amiloride but was increased by ouabain. We conclude that in thyroid cells, the Na+/K+-ATPase is present on the basolateral domain of the plasma membrane whereas an amiloride sensitive sodium uptake occurs at the apical surface.  相似文献   

20.
Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an immediate (less than 1 min) increase of the 42K efflux to approximately 174% of control in tissues incubated either in SO4-Ringer solution or in Cl-Ringer solution containing furosemide. Whereas furosemide had no effect on J23K in control tissues bathed in Cl-rich or Cl-free solutions, ouabain induced a furosemide-inhibitable and time-dependent increase of a neutral Cl-dependent component of the J23K. Electroconductive K+ transport occurred via a single-filing K+ channel with an n' of 2.9 K+ efflux before ouabain, normalized to post-ouabain (+/- furosemide) values of short-circuit current, averaged 8-10 microA/cm2. In agreement with the conclusions of the preceding article, the macroscopic stoichiometry of ouabain-inhibitable Na+/K+ exchange by the pump was variable, ranging between 1.7 and 7.2. With increasing rates of transepithelial Na+ transport, pump-mediated K+ influx saturated, whereas Na+ efflux continued to increase with increases of pump current. In the usual range of transepithelial Na+ transport, regulation of Na+ transport occurs via changes of pump-mediated Na+ efflux, with no obligatory coupling to pump-mediated K+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号