首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, the seasonal breeding can be controlled by photoperiod, which affects the durations of nightly melatonin secretions. Winterlike short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo gonadal development much later than animals born into long days. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), comprise a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8:16 h light/dark cycle) versus long-day (16:8 h light/dark cycle) conditions. At 40–47 days of age, development of three components of the SNB neuromuscular system were all significantly delayed in hamsters raised in the short photoperiod: BC/LA muscle weight, the size of SNB motoneuronal somata, and the area of the neuromuscular junctions at the BC/LA muscles of short-day hamsters were each significantly reduced relative to those of long-day counterparts. Thus, development of the SNB reproductive system is delayed under short day lengths in this species. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 355–360, 1998  相似文献   

2.
Short day lengths induce testicular regression in seasonally breeding Syrian hamsters. To test whether the ventromedial hypothalamus is necessary to maintain reproductive quiescence once testicular regression has been achieved, photoregressed male hamsters were subjected to lesions of the ventromedial hypothalamus (VMHx), pinealectomy (Pinx), or sham operation (Sham). VMHx hamsters underwent accelerated gonadal recrudescence compared to Pinx and Sham hamsters. Recovery of prolactin concentrations (PRL) to values characteristic of long-day hamsters was hastened in the VMHx animals compared to Sham hamsters. Concentrations of follicle stimulating hormone (FSH) increased prematurely in both the VMHx and Pinx animals, beginning a few weeks after surgery. By the time the gonads had undergone recrudescence and the hamsters were refractory to melatonin, PRL and FSH concentrations had returned to baseline long-day values in all groups; there was no evidence of hypersecretion of either hormone in any of the animals with lesions. Melatonin concentrations of VMHx hamsters did not differ from those of sham-operated animals, but because only a single determination was made, it remains possible that VMH damage altered the duration of nightly melatonin secretion. An intact VMH appears to be essential for the continued maintenance of reproductive suppression induced by exposure to short day lengths; these and earlier findings suggest that the VMH-dorsomedial hypothalamic complex mediates regression of the reproductive apparatus during decreasing day lengths of late summer and early autumn and also is necessary to sustain regression during the winter months.  相似文献   

3.
Energetic demands are high while energy availability is minimum during winter. To cope with this energetic bottleneck, animals exhibit numerous energy-conserving adaptations during winter, including changes in immune and reproductive functions. A majority of individual rodents within a population inhibits reproductive function (responders) as winter approaches. A substantial proportion of small rodents within a species, however, fails to inhibit reproduction (nonresponders) during winter in the field or in the laboratory when maintained in winter-simulated day lengths. In contrast, immune function is bolstered by short day lengths in some species. The specific mechanisms that link reproductive and immune functions remain unspecified. Leptin is a hormone produced by adipose tissue, and several studies suggest that leptin modulates reproductive and immune functions. The present study sought to determine if photoperiodic alterations in reproductive function and leptin concentrations are linked to photoperiod-modulated changes in immune function. Siberian hamsters (Phodopus sungorus) were housed in either long (LD 16:8) or short (LD 8:16) day lengths for 9 wk. After 9 wk, blood samples were collected during the middle of the light and dark phase to assess leptin concentrations. One week later, animals were injected with keyhole limpet hemocyanin to evaluate humoral immunity. Body mass, body fat content, and serum leptin concentrations were correlated with reproductive responsiveness to photoperiod; short-day animals with regressed gonads exhibited a reduction in these measures, whereas short-day nonresponders resembled long-day animals. In contrast, immune function was influenced by photoperiod but not reproductive status. Taken together, these data suggest that humoral immune function in Siberian hamsters is independent of photoperiod-mediated changes in leptin concentrations.  相似文献   

4.
During the first 7 weeks of postnatal life, short day lengths inhibit the onset of puberty in many photoperiodic rodents, but not in Syrian hamsters. In this species, timing of puberty and fecundity are independent of the early postnatal photoperiod. Gestational day length affects postnatal reproductive development in several rodents; its role in Syrian hamsters has not been assessed. We tested the hypothesis that cumulative effects of pre- and postnatal short day lengths would restrain gonadal development in male Syrian hamsters. Males with prenatal short day exposure were generated by dams transferred to short day lengths 6 weeks, 3 weeks, and 0 weeks prior to mating. Additional groups were gestated in long day lengths and transferred to short days at birth, at 4 weeks of age, or not transferred (control hamsters). In pups of dams exposed to short day treatment throughout gestation, decreased testis growth was apparent by 3 weeks and persisted through 9 weeks of age, at which time maximum testis size was attained. A subset of males (14%), whose dams had been in short days for 3 to 6 weeks prior to mating displayed pronounced delays in testicular development, similar to those of other photoperiodic rodents. This treatment also increased the percentage of male offspring that underwent little or no gonadal regression postnatally (39%). By 19 weeks of age, males housed in short days completed spontaneous gonadal development. After prolonged long day treatment to break refractoriness, hamsters that initially were classified as nonregressors underwent testicular regression in response to a 2nd sequence of short day lengths. The combined action of prenatal and early postnatal short day lengths diminishes testicular growth of prepubertal Syrian hamsters no later than the 3rd week of postnatal life, albeit to a lesser extent than in other photoperiodic rodents.  相似文献   

5.
In this study, the authors asked whether pinealectomy or temporary exposure to a stimulatory photoperiod affects the timing of spontaneous testicular recrudescence in adult Siberian hamsters chronically exposed to short days (9:15 light:dark). In Experiment 1, hamsters were pinealectomized after 6, 9, or 12 weeks in short days. Pinealectomy after 9 or 12 weeks did not affect the timing of spontaneous gonadal growth (27.7 +/- 1.9 and 25.4 +/- 1.3 weeks, respectively) compared to sham-operated controls (28.6 +/- 0.9 weeks). Enlarged testes occurred earlier in animals that were pinealectomized after 6 weeks in short days (21.8 +/- 2.1 weeks). In Experiment 2, adult hamsters were exposed to short days for 9 weeks, transferred to long days (16:8 light:dark) for 4 weeks, and then returned to short days for 23 additional weeks. Although long-day interruption caused gonadal growth in 15 out of 19 hamsters, the temporary long-day exposure did not affect the timing of spontaneous gonadal growth following return to short days (28.2 +/- 0.9 weeks) in 10 of the 15, relative to the timing observed in control hamsters continuously maintained in short days (28.2 +/- 1.1 weeks). Four out of 19 hamsters did not show gonadal growth following long-day exposure. Spontaneous gonadal growth in these hamsters (28.0 +/- 1.4 weeks) also occurred at the same time as controls. The remaining 5 hamsters exhibited enlarged testes following long-day exposure (12.0 +/- 0.0 weeks) but were refractory to the second short-day exposure. All hamsters exhibited entrainment of wheel-running activity following the change in photoperiod. A final group of 13 animals were pinealectomized before long-day transfer. They exhibited gonadal growth (at 17.2 +/- 0.8 weeks) but failed to regress a second time when returned to short days. The timing of gonadal growth in these animals was delayed relative to the sham-operated hamsters temporarily transferred to long days (Experiment 2) but accelerated relative to the hamsters pinealectomized at 9 weeks, which remained continuously in short days (Experiment 1). The results of both experiments suggest that a pineal-independent process mediates the timing of spontaneous gonadal growth in Siberian hamsters chronically exposed to a short-day photoperiod.  相似文献   

6.
Puberty, which is markedly delayed in male Siberian hamsters (Phodopus sungorus) born into short day lengths, is controlled by an interval timer regulated by the duration of nocturnal melatonin secretion. Properties of the interval timer were assessed by perturbing normal patterns of melatonin secretion in males gestated and maintained thereafter in 1 of 2 short day lengths, 10 h light/day (10 L) or 12L. Melatonin secretion of short-day hamsters was suppressed by constant light treatment or modified by daily injection of propranolol to mimic nocturnal melatonin durations typical of long-day hamsters. Constant light treatment during weeks 3 to 5 induced early incomplete gonadal growth in 12L but not 10 L hamsters but did not affect late onset of gonadal development indicative of puberty in either photoperiod. Propranolol treatment during postnatal weeks 3 to 5 induced transient growth of the testes and ultimately delayed the timing of puberty by 3 weeks. Similar treatments between weeks 5 and 7 or on alternate weeks for 24 weeks did not affect the interval timer. The first 2 weeks after weaning may constitute a critical period during which the interval timer is highly responsive to photoperiod. Alternatively, the hamsters' photoperiodic history rather than age or developmental stage may be the critical variable. The interpolation of long-day melatonin signals at the time of weaning does not appear to reset the interval timer to its zero position but may reduce timer responsiveness to long-day melatonin signals several weeks later.  相似文献   

7.
FSH levels begin to rise 3-5 days after male Siberian hamsters are transferred from inhibitory short photoperiods to stimulatory long photoperiods. In contrast, LH levels do not increase for several weeks. This differential pattern of FSH and LH secretion represents one of the most profound in vivo examples of differential regulation of the gonadotropins. The present study was undertaken to characterize the molecular mechanisms controlling differential FSH and LH synthesis and secretion in photostimulated Siberian hamsters. First, we cloned species-specific cDNAs for the three gonadotropin subunits: the common alpha subunit and the unique FSHbeta and LHbeta subunits. All three subunits share high nucleotide and predicted amino acid sequence identity with the orthologous cDNAs from rats. We then used these new molecular probes to examine the gonadotropin subunit mRNA levels from pituitaries of short-day male hamsters transferred to long days for 2, 5, 7, 10, 15, or 20 days. Short-day (SD) and long-day (LD) controls remained in short and long days, respectively, from the time of weaning. We measured serum FSH and LH levels by RIA. FSHbeta, LHbeta, and alpha subunit mRNA levels were measured from individual pituitaries using a microlysate ribonuclease protection assay. Serum FSH and pituitary FSHbeta mRNA levels changed similarly following long-day transfer. Both were significantly elevated after five long days (2.3- and 3.6-fold, respectively; P < 0.02) and declined thereafter, but they remained above SD control values through 20 long days. Alpha subunit mRNA levels also increased significantly relative to SD control values (maximum 2-fold increase after seven long days; P < 0.03), although to a lesser extent than FSHbeta. Neither serum LH nor pituitary LHbeta mRNA levels changed significantly following long-day transfer. The results indicate that long-day-associated increases in serum FSH levels in Siberian hamsters reflect an underlying increase in pituitary FSHbeta and alpha subunit mRNA accumulation.  相似文献   

8.
In Siberian hamsters (Phodopus sungorus), short days suppress reproductive function and lymphocyte proliferation. To determine whether melatonin influences cell-mediated immunity through a direct action on lymphocyte proliferation, in vitro responsiveness to mitogens and melatonin was assessed in systemic and splenic lymphocytes from adult female Siberian hamsters housed in either long or short days for 13 weeks. Short days provoked reproductive regression and reduced lymphocyte proliferation. Physiological concentrations of melatonin (50 pg/ml) inhibited in vitro proliferation of circulating lymphocytes, whereas higher concentrations (> or = 500 pg/ml) were required to inhibit proliferation of splenic lymphocytes. Immunomodulatory effects of melatonin were restricted to lymphocytes from long-day hamsters-in vitro melatonin had no effect on circulating or splenic lymphocytes from females in short days. Responsiveness to melatonin in short-day lymphocytes may be restrained by the already expanded nightly pattern of melatonin secretion in short days. These data support the hypothesis that melatonin acts directly on lymphocytes from long-day hamsters to suppress blastogenesis.  相似文献   

9.
Continuous exposure of male hamsters to short day lengths induces testicular regression. This is followed many weeks later by spontaneous recrudescence of the testes with reinitiation of spermatogenesis and function of the accessory sexual glands. Hamsters at this stage of the annual reproductive cycle are refractory to short photoperiods--even continuous darkness will not induce another bout of testicular regression. Animals refractory to short days are also refractory to the pineal hormone melatonin and a number of investigators attribute spontaneous recrudescence and photo and melatonin refractoriness to a developed target cell insensitivity to endogenous melatonin from the pineal. Refractoriness is terminated by exposure to long days for at least 11 weeks. The pineal gland is reported to be essential for this process. We report here the effects of pinealectomy, daily melatonin injections, and constant-release melatonin implants on the ability of male hamsters to recover from the refractory state. In the absence of the pineal gland, refractory male hamsters did not discriminate (count?) 15 weeks of long days to terminate refractoriness. Daily melatonin injections at 1900 h, but not at 1200 h (lights 0600-2000 h) during the 15 weeks of long-day exposure blocked the recovery from refractoriness. Constant-release melatonin implants abolished the animals ability to measure 12 and 15 weeks of long days to terminate refractoriness. These results demonstrate that general target tissue insensitivity to melatonin cannot account for the refractory state in hamsters, that a multiplicity of target tissues may exist for melatonin to account for its varied roles throughout the annual reproductive cycle in hamsters, and that the pineal gland is intimately involved in the animals' ability to measure a prescribed duration of long days to terminate refractoriness.  相似文献   

10.
The present study tested the hypothesis that responsiveness to melatonin, the presence of the melatonin rhythm in circulation, and parameters of the GnRH neuron system are sustained across the aging continuum in Siberian hamsters. Afternoon melatonin injections induced testicular atrophy in 42% of aged males compared with 100% of adult males. The proportion of aged males failing to respond to the melatonin injections was similar to the proportion that failed to undergo testicular regression upon exposure to short days. Exposure to short days induced testicular atrophy in juvenile and adult hamsters; however, regression was incomplete or absent in 43% of aged males. The nocturnal rise in melatonin was similar with regard to duration and peak amplitude, and appropriate with respect to photoperiod in 25-day-old juveniles, adult (5 months), and aged (17 months) hamsters. Neither advanced age nor timed melatonin treatments affected GnRH neuron numbers or distribution. Fertility was maintained in aged and adult males to a comparable extent with respect to latency to first litter and number of pups per litter; reproductive success was dramatically reduced in aged compared with adult females. Because melatonin rhythms accurately reflect day length information throughout the continuum from puberty to advanced age, the present evidence suggests that limitations in testis regression in response to short days or exogenous melatonin in a subset of aged males result from a reduced ability to respond to melatonin. In the wild, failure to undergo testicular regression in the presence of shortening day lengths may extend the breeding season of aged males.  相似文献   

11.
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, seasonal breeding can be controlled by photoperiod, which affects the duration of nightly melatonin secretion. Winterlike, short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo pubertal gonadal development later than animals born into long days. However, to date there have been no reports of gestational photoperiod affecting fetal development of reproductive systems. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), compose a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8 h light, 16 h dark; 8L:16D) versus long-day (16L:8D) conditions. On the day of birth, and at postnatal (PN) days 2 and 18, the BC/LA muscles of hamsters gestated and raised in the short photoperiod were significantly reduced relative to those of their long-day counterparts. Testes weights were not significantly different between groups until day 18. Thus, photoperiod exposure during gestation and after birth affects perinatal development of the SNB system in this species, and these effects can be seen as early as the day of birth. Because photoperiod did not significantly affect testes weights until PN18, these results suggest that either perinatal photoperiod affects fetal androgen production without affecting testes weight or it influences BC/LA development independently from androgen.  相似文献   

12.
The effects of exogenous gonadal steroids, testosterone (T), and 17beta-estradiol (E(2)) upon the hypothalamo-pituitary-gonadal axis were reported to be different between prepubertal and adult Siberian hamsters. Utilizing an in vitro static culture system, we investigated if age-related differences in steroid responsiveness occurs at the pituitary. Prepubertal (20 days old) or adult (140 days old) male Siberian hamsters were implanted with 1 mm silastic capsules containing undiluted T, E(2) or cholesterol (Ch, control). After 15 days, pituitaries were removed, incubated in vitro, and subjected to the following treatments: two baseline measurements, one challenge with 10ng/ml of D-Lys(6)-gonadotropin-releasing hormone (GnRH), and three post-challenge washes. Fractions were collected every 30 minutes and measured for follicle-stimulating hormone (FSH) and luteinizing hormone (LH). T and E(2 )reduced basal secretion of LH and FSH in juveniles but not adults. In juveniles, E(2) increased GnRH-induced FSH and LH secretion, while T augmented GnRH-induced FSH secretion but attenuated GnRH-induced LH secretion. Steroid treatment had no effect on GnRH-stimulated LH or FSH release in adults. The only effect of steroid hormones upon adult pituitaries was the more rapid return of gonadotropin secretion to baseline levels following a GnRH challenge. These data suggest both basal and GnRH-induced gonadotropin secretion are more sensitive to steroid treatment in juvenile hamsters than adults. Further, differential steroidal regulation of FSH and LH at the level of the pituitary in juveniles might be a mechanism for the change in sensitivity to the negative effects of steroid hormones that occurs during the pubertal transition.  相似文献   

13.
The Turkish hamster (Mesocricetus brandti) is a photoperiodic species. In this investigation, we characterized the photoperiodic requirements for termination of gonadal refractoriness, defined as the inability of the animal to respond to short-day treatment with gonadal regression. Paired testes weights were reduced to less than 20% of their original weight by 10 wk of 12L:12D treatment. This was followed by spontaneous testicular recrudescence (completed by Week 25 of 12L:12D treatment), the overt indication of refractoriness to short photoperiods. Next, the period of long-day exposure sufficient for termination of refractoriness was determined. Refractory males were exposed to 16L:8D for 5 to 20 wk. Ten weeks of 16L:8D treatment was enough for the animals to regain the sensitivity to a second challenge of 12L:12D treatment. Fifteen weeks of 20L:4D or 16L:8D terminated refractoriness in female Turkish hamsters; 20L:4D therefore was not interpreted as a short day by refractory hamsters. This was unexpected because in photosensitive animals this photoperiod acts like a short day, causing gonadal regression. These results suggest that Turkish hamsters are similar to Syrian hamsters in that both species require two or more months of long days in summer to recover sensitivity to the short days of the following fall.  相似文献   

14.
Transfer of adult Siberian hamsters (Phodopus sungorus) from long (16 h light and 8 h dark, 16L:8D) to short (8L:16D) daily photoperiods induces an involution of the gonads and a cessation of reproductive behavior 8 to 10 weeks later. However, when male and female long-day hamsters were paired on transfer to short photoperiods, the males' gonads did not undergo the typical short-day response. Similarly, when male long-day hamsters were paired with refractory females (i.e., females housed in short photoperiods for at least 28 weeks so that they became unresponsive to short photoperiods), the response of the males' reproductive system to short photoperiods also was attenuated. Thus, social cues can override or delay the effects of photoperiod on the testes of this species. These results suggest that the inhibitory effects of long durations of melatonin secretion (in response to short photoperiods) on the male hypothalamic-pituitary-gonadal axis may be attenuated by social cues such as contact with the opposite sex.  相似文献   

15.
Exposure to low ambient temperatures (Ta) accelerates appearance of the winter phenotype in Siberian hamsters transferred from long to short day lengths. Because melatonin transduces the effects of day length on the neuroendocrine axis, the authors assessed whether low Ta promotes the transition to winterlike traits by accelerating the onset of increased nocturnal melatonin secretion or by enhancing responsiveness to melatonin in short day lengths. Male hamsters were transferred from 16L (16 h light/day) to 8L (8 h light/day) photoperiods and held at 5 degrees C or 22 degrees C. Locomotor activity was recorded continuously, and body mass, testis size, and pelage color were determined biweekly for 8 weeks. The duration of nocturnal locomotion (alpha), a reliable indicator of the duration of nocturnal melatonin secretion, lengthened significantly earlier in hamsters exposed to a Ta of 5 degrees C than 22 degrees C. Cold exposure increased the proportion of hamsters that were photoresponsive: gonadal regression in short days increased from 44% at 22 degrees C to 81% at 5 degrees C (p < 0.05); low Ta did not, however, accelerate testicular regression in animals that were photoresponsive. Nonphotoresponsive animals at 5 degrees C temporarily had longer alphas during the first 4 weeks in short days and significant decreases in body mass and testicular size that were reversed during the ensuing weeks when alpha decreased. In a 2nd experiment, pinealectomized male hamsters infused for 10 h/day with melatonin for 2 weeks had significantly lower body and testes masses when maintained at 5 degrees C but not 22 degrees C. Low-ambient temperature appears to accelerate the appearance of the winter phenotype primarily by increasing target tissue responsiveness to melatonin and to a lesser extent by augmenting the rate at which the duration of nocturnal melatonin secretion increases in short day lengths.  相似文献   

16.
Siberian hamsters (Phodopus sungorus) exhibit seasonal cycles of reproduction driven by changes in day length. Day length is encoded endogenously by the duration of nocturnal melatonin (Mel) secretion from the pineal gland. Short-duration Mel signals stimulate reproduction and long-duration signals inhibit reproduction. The mechanism by which Mel signals are decoded at the level of neural target tissues remains uncharacterized. In Siberian hamsters, exposure to short day lengths or injections of Mel in long days results in a decrease in hypothalamic expression of type 2 iodothyronine deiodinase (Dio2) mRNA. Dio2 catalyzes the conversion of the thyroid hormone thyroxine to triiodothyronine (T3). Thus exposure to short and long day lengths should decrease and increase hypothalamic T3 concentrations, respectively. We tested the hypothesis that exogenous T3 administered to short-day hamsters would mimic exposure to long day lengths with respect to gonadal stimulation. Hamsters gestated and raised in short day lengths that exhibited photoinhibition of the testes were given daily subutaneous injections of T3 or saline vehicle for 4 wk beginning at week 12 of life. The results indicate that exogenous T3 induced gonadal growth in short-day hamsters and delayed spontaneous gonadal development by an interval equal to the number of weeks during which T3 was administered. T3 injections delayed gonadal regression if given coincident with the transfer of hamsters from long to short day lengths. These results suggest that T3 mimics long day exposure in Siberian hamsters and may serve as an intermediate step between the Mel rhythm and the reproductive response.  相似文献   

17.
The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited to require many weeks of long days based on studies employing static photoperiods instead of the annual pattern of continually changing photoperiods under which these mechanisms evolved. Maintaining Siberian hamsters under simulated natural photoperiods, we demonstrate that winter refractoriness is broken within six weeks after the spring equinox. We then test whether a history of natural photoperiod exposure can eliminate the requirement for long-day melatonin signalling. Hamsters pinealectomized at the spring equinox and challenged 10 weeks later with winter melatonin infusions exhibited gonadal regression, indicating that refractoriness was broken. A photostimulatory effect on body weight is first observed in the last four weeks of winter. Thus, the seasonal transition to the summer photosensitive phenotype is triggered prior to the equinox without exposure to long days and is thereafter melatonin-independent. Distinctions between photoperiodic and circannual seasonal organization erode with the incorporation in the laboratory of ecologically relevant day length conditions.  相似文献   

18.
To define a functional difference in Sertoli cells of animals exposed to different photoperiodic conditions, we isolated Sertoli cells from the testes of juvenile Siberian hamsters and cultured them in serum-free medium. In all age groups studied, Sertoli cells isolated from hamsters with delayed and normal puberty responded to follicle-stimulating hormone (FSH) with an increase in lactate production. The increase in lactate production induced by 1000 ng FSH ml-1 was significantly greater in Sertoli cells isolated from hamsters with delayed puberty than in those with normal puberty. These results suggest that Sertoli cells of Siberian hamsters exposed to short photoperiod in vivo may respond to increases in plasma FSH concentrations associated with photostimulation or spontaneous sexual maturation by an increase in secretory activity that may be critical for the initiation of spermatogenesis.  相似文献   

19.
Gonadal steroids are essential for the long-term maintenance of the full repertoire of sexual behavior in male rodents. Typically, all individuals of several species cease to display the ejaculatory reflex within a few weeks of castration. The present study documents the persistence of the ejaculatory reflex 19 weeks after orchidectomy in 40% of male Siberian hamsters maintained in long or short day lengths; testosterone was undetectable in the circulation of these animals. Intact hamsters transferred from a long to a short photoperiod underwent gonadal regression: 50% of these animals continued to display mating behavior culminating in ejaculation throughout 25 weeks of testing. The remaining animals failed to ejaculate after approximately 11 weeks of short day treatment but resumed mating coincident with spontaneous gonadal recrudescence. Activation of sex behavior in the latter cohort appears to depend on gonadal steroids and is in contrast to the copulatory behavior of the substantial proportion of the study population that sustains the full sexual repertoire in the long-term absence of gonadal steroids. Sex behavior of the latter animals may be dependent on nongonadal steroids or mediation by steroid-independent mechanisms.  相似文献   

20.
Many nontropical rodent species display seasonal changes in both physiology and behavior that occur primarily in response to changes in photoperiod. Short-day reductions in reproduction are due, in part, to reductions in gonadal steroid hormones. In addition, gonadal steroids, primarily testosterone (T), have been implicated in aggression in many mammalian species. Some species, however, display increased aggression in short days despite basal circulating concentrations of T. The goal of the present studies was to test the effects of photoperiod on aggression in male Siberian hamsters (Phodopus sungorus) and to determine the role of T in mediating photoperiodic changes in aggression. In Experiment 1, hamsters were housed in long and short days for either 10 or 20 weeks and aggression was determined using a resident-intruder model. Hamsters housed in short days for 10 weeks underwent gonadal regression and displayed increased aggression compared to long-day-housed animals. Prolonged maintenance in short days (i.e., 20 weeks), however, led to gonadal recrudescence and reduced aggression. In Experiment 2, hamsters were housed in long and short days for 10 weeks. Half of the short-day-housed animals were implanted with capsules containing T whereas the remaining animals received empty capsules. In addition, half of the long-day-housed animals were castrated whereas the remaining animals received sham surgeries. Short-day control hamsters displayed increased aggression compared to either castrated or intact long-day-housed animals. Short-day-housed T treated hamsters, however, did not differ in aggression from long-day-housed animals. Collectively, these results confirm previous findings of increased aggression in short-day-housed hamsters and suggest that short-day-induced increases in aggression are inversely related to gonadal steroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号