首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acetyl-coenzyme-A carboxylase has been isolated in homogeneous form from Candida lipolytica. The homogeneity of the enzyme preparation is evidenced by analytical ultracentrifugation, dodecyl-sulfate-polyacrylamide gel electrophoresis and Ouchterlony double-diffusion analysis. The purified enzyme exhibits a specific activity of 8.0 U/mg protein at 25 degrees C and contains 1 mol biotin/263000 g protein. The sedimentation coefficient (S20,W) of the enzyme is 18 S. It has been shown by dodecyl-sulfate-polyacrylamide gel electrophoresis that the enzyme possesses only one kind of subunit with a molecular weight of 230000. This finding, together with the biotin content, indicates that the C. lipolytica enzyme has a highly integrated subunit structure. The C. lipolytica enzyme is very labile, but is stabilized by glycerol. The enzyme is markedly activated by poly(ethyleneglycol), the activation being due principally to a decrease in the Km values for substrates. Even in the presence of this activator, the Km value for acetyl-CoA of the C. lipolytica enzyme is much higher than that of the enzyme from Saccharomyces cerevisiae and animal tissues. The C. lipolytica enzyme, unlike the enzyme from animal tissues, is not activated by citrate.  相似文献   

2.
1. Qualitative studies on the stability of rabbit erythrocyte purine nucleoside phosphorylase showed a marked decrease in the susceptibility of the enzyme to thermal inactivation and digestion by proteinases of different specificities in response to certain of its substrates. 2. The extent to which inosine stabilizes the enzyme against thermal and proteolytic inactivation is related in a quantitative manner to the concentration of this substrate; it is proposed that differences in the rates of inactivation of the enzyme may reflect substrate-induced conformational changes in the enzyme structure that could alter the binding properties of the enzyme in a kinetically significant way. 3. A synergistic effect in the stabilization of the enzyme is observed in response to both substrates, inosine and phosphate, when the enzyme is inactivated with Pronase. 4. In the presence of substrate an increased rate of inactivation after reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) is reported. 5. Differential-inactivation studies were also carried out with calf spleen purine nucleoside phosphorylase, and the results are discussed in relation to the kinetic properties displayed by this enzyme.  相似文献   

3.
The DNA-stimulated 75000-Mr ATPase described in the preceding paper is shown to be a further catalytic DNA unwinding principle (DNA unwinding enzyme II) made in Escherichia coli cells (the first being the 180000-Mr ATPase of the cells: DNA unwinding enzyme I). Unwinding depends strictly, on the supply of ATP. It occurs only under conditions permitting ATP dephosphorylation and it proceeds as long as enzyme molecules are permitted to enter the enzyme - DNA complex. The enzyme binds specifically to single-stranded DNA yielding a complex of only limited stability. These results are interpreted in terms of a distributive mode of action of the enzyme. It is argued that chain separation starts near a single-stranded DNA region and that, forced by continued adsorption of enzyme molecules to the DNA, it develops along the duplex. This mechanism is different from that deduced previously for DNA unwinding enzyme I. Complicated results were obtained using ATPase prepared from rep3 mutant cells.  相似文献   

4.
A new ribonuclease has been isolated from Escherichia coli. The enzyme is present in the 100,000 times g supernatant fraction and has been purified over 200-fold. Studies of the enzyme reveal that: 1. The enzyme shows a marked preference for oligoribonucleotides; indeed, the reaction rate is inversely proportional to the chain length of the substrate. The enzyme does not attack polynucleotides even at high concentrations of enzyme and has no detectable DNase activity. 2. The enzyme is stimulated strongly by Mn2+, less strongly by Mg2+, and not at all by Ca2+ and monovalent cations. 3. The enzyme is purified free of RNase I, RNase II, RNase III, polynucleotide phosphorylase, and other known ribonucleases of E. coli. The enzyme displays identical properties when isolated from mutants of E. coli that are deficient in the above ribonucleases. 4. The enzyme has a marked thermostability, a point of further distinction from RNase II.  相似文献   

5.
The DNA-stimulated ATPase characterized in the accompanying paper is shown to be a DNA unwinding enzyme. Substrates employed were DNA, RNA hybrid duplexes and DNA-DNA partial duplexes prepared by polymerization on fd phage single-stranded DNA template. The enzyme was found to denature these duplexes in an ATP-dependent reaction, without detectably degrading. EDTA, an inhibitor of the Mg2+-requiring ATPase, was found to prevent denaturation suggesting that dephosphorylation of the ATP and not only its presence is required. These results together with those from enzyme-DNA binding studies lead to ideas regarding the mode of enzymic action. It is proposed that the enzyme binds, in an initial step, to a single-stranded part of the DNA substrate molecule and that from here, energetically supported by ATP dephosphorylation, it invades double-stranded parts separating base-paired strands by processive, zipper-like action. It is further proposed that chain separation results from the combined action of several enzyme molecules and that a tendency of the enzyme to aggregate with itself reflects a tendency of the molecules to cooperate. Various functions are conceivable for the enzyme.  相似文献   

6.
Highly purified aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) from Escherichia coli, already of full activity, is further activated 3.3-fold by limited treatment with trypsin. The activation requires a few minutes to attain maximum level, and hereafter the activity gradually decreases to complete inactivation. Prior or intermediate addition of soybean trypsin inhibitor results in an immediate cessation of any further change in the enzyme activity. Upon trypsin-mediated activation no appreciable change is detected in the molecular weight of the enzyme subunits as judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis, nor in the pH vs. activity profile in the presence of added metal ions. However, S0.5 and hill coefficient for L-aspartate considerably increase upon activation. As the trypsin-mediated activation proceeds, a marked absorbance difference spectrum of the trypsin-treated aspartase vs. untreated aspartase appears with negative absorbance maxima at 278 and 285 nm. When the trypsin-activated enzyme is denatured in 4 M guanidine-HCl, followed by removal of the denaturant by dilution, the enzyme activity is readily restored to as much as 1.5 times that of the native enzyme, indicating that the trypsin-activated enzyme is rather a stable molecule.  相似文献   

7.
The level of acetyl-coenzyme-A carboxylase activity in Candida lipolytica undergoes large variations depending upon the carbon source on which the yeast is grown. Cells grown on n-alkanes or fatty acids exhibit a lower activity level than do cells grown on glucose. Among the n-alkanes and fatty acids tested, n-heptadecane, n-octadecane, oleic acid and linoleic acid reduce the enzyme activity to the lowest levels, which are 16-18% of the activity level in glucose-grown cells. Immunochemical titrations and Ouchterlony double-diffusion analysis with specific antibody as well as kinetic studies have indicated that the observed decrease in the level of acetyl-CoA carboxylase activity is due to a reduction in the cellular content of the enzyme. Furthermore, isotopic leucine incorporation studies with the use of the immunoprecipitation technique have demonstrated that the relative rate of synthesis of the enzyme in oleic-acid-grown cells is diminished to 12% of that in glucose-grown cells. Evidence has also been obtained to support the view that the enzyme in this yeast is not degraded at a rate high enough to contribute to the marked decrease in the cellular content of the enzyme. Thus, it is concluded that the reduction in acetyl-CoA carboxylase content in fatty-acid-grown cells is due to diminished synthesis of the enzyme.  相似文献   

8.
Zn2+ regulation of ornithine transcarbamoylase. II. Metal binding site   总被引:2,自引:0,他引:2  
Two types of conformational changes are mediated in Escherichia coli ornithine transcarbamoylase by the metal ion zinc. Upon binding of zinc in rapid equilibrium, the enzyme undergoes an allosteric transition. In the absence of substrates, the zinc-bound enzyme further undergoes a slow isomerization with a concomitant activity loss. Three metal ions are tightly complexed in the isomerized enzyme as determined by gel chromatography and atomic absorption spectroscopy. Since the enzyme is a trimer composed of identical subunits, one zinc ion is bound per enzyme monomer. With the application of site-directed mutagenesis, the cysteinyl residue at position 273 of the enzyme has been identified as a metal ligand. When this residue is replaced by an alanine, zinc is no longer a tight-binding inhibitor and does not promote isomerization. The alteration in the action of zinc on the mutant enzyme is attributed to a reduced metal affinity. The mutant enzyme, when saturated by the metal, displays an intrinsic allostery unchanged from that of the wild-type; an identical Hill coefficient of 1.5 is found for zinc binding to the Ala273 and wild-type enzymes. Cys273 is also a binding site of L-ornithine. At pH 8.5, the Ala273 enzyme binds the substrate analog L-norvaline ten times more weakly and exhibits a kcat/Kmorn that is 27 times less than that of the wild-type enzyme. This finding supports our earlier interpretation that the zinc-induced ornithine co-operativity of ornithine transcarbamoylase is caused by direct competition between L-ornithine and the metal for the same site. As controls, each of the remaining three cysteinyl residues of the bacterial ornithine transcarbamoylase has also been replaced with alanine. These sulfhydryl groups are found not to be related to zinc complexation, ornithine binding or enzyme allostery.  相似文献   

9.
Beta-Ketoacyl-acyl carrier protein (ACP) synthetase catalyzes the condensation reaction of fatty acid synthesis in Escherichia coli. The homogeneous enzyme reacts with hexanoyl-CoA to form hexanoyl-enzyme which was isolated and characterized. Hexanoyl-enzyme contains 2 mol of hexanoate/mol of enzyme (molecular weight 66,000); it is liable at alkaline pH, and it reacts with neutral hydroxylamine to form hexanoyl hydroxamic acid. Hexanoate was cleaved from the enzyme when hexanoyl-enzyme was subjected to performic acid oxidation. These properties indicate that hexanoyl-enzyme is a thioester. Studies of the circular dichroism spectra of fully acylated and nonacylated forms of the enzyme indicated that the secondary structure of the enzyme is relatively unperturbed by the presence of the hexanoyl groups. An alpha helical content of 65% was estimated for the enzyme from the circular dichroism spectrum. Hexanoyl-enzyme is active in both partial reactions that comprise the beta-ketoacyl-ACP synthetase reaction; it reacts with ACP to form hexanoyl-ACP and with malonyl-ACP to form beta-ketooctanoyl-ACP. Although the hexanoate of hexanoyl-enzyme is transferred very rapidly to ACP, the physiological acceptor in this reaction, it is also transferred very slowly to CoA, dithiothreitol, and 2-mercaptoethanol, indicating that the enzyme can react nonspecifically with a number of unrelated mercaptans.  相似文献   

10.
The inhibition of cytochrome c oxidase by cyanide, starting either with the resting or the pulsed enzyme, was studied by rapid-freeze quenching followed by quantitative e.p.r. It is found that a partial reduction of cytochrome oxidase by transfer of 2 electron equivalents from ferrocytochrome c to cytochrome a and CuA will induce a transition from a closed to an open enzyme conformation, rendering the cytochrome a3-CuB site accessible for cyanide binding, possibly as a bridging ligand. A heterogeneity in the enzyme is observed in that an e.p.r. signal from the cytochrome a3 3+-HCN complex is only found in 20% of the molecules, whereas the remaining cyanide-bound a3-CuB sites are e.p.r.-silent.  相似文献   

11.
A large-scale purification of monkey brain arylamidase was carried out. Amino acid analyses indicate that the enzyme is rich in acidic amino acids and is poor in cystine. The amino terminal residue was determined to be alanine by dansylation. The enzyme was activated by sulfhydryl compounds. Dithiothreitol was more effective than beta-mercaptoethanol. Bestatin competitively inhibited the enzyme activity and the Ki value was calculated to be 2.5 x 10(-7) M, which was of the same order as that of puromycin. The inhibitions by puromycin and bestatin were reversible. The enzyme hydrolyzed di-, tri-, and oligopeptides including physiologically active peptides. Of physiologically active peptides, enkephalins and Met-Lys-bradykinin, which possess a neutral amino acid at the N-terminal position, were more rapidly hydrolyzed by the enzyme. Peptides such as LH-RH and TRH, which possess a pyrrolidonecarboxylyl group at the N-terminal position, and substance P and bradykinin, which possess a proline residue adjacent to the N-terminal residue, were not hydrolyzed by the enzyme. The Km values for various peptides indicate that the enzyme has higher affinity for oligopeptides than di- and tripeptides. The aminopeptidase activity of the enzyme was also competitively inhibited by puromycin and bestatin. Analyses of the hydrolysis products of various peptides by the dansylation method indicate that the enzyme has both kinin-converting activity and angiotensinase activity.  相似文献   

12.
Barry G. Hall 《Genetics》1978,89(3):453-465
The evolution of ebgo enzyme of Escherichia coli, an enzyme which is unable to hydrolyze lactose, lactulose, lactobionate, or galactose-arabinoside effectively, has been directed in successive steps so that the evolved enzyme is able to hydrolyze these galactosides effectively. I show that in order for a strain of E. coli with a lacZ deletion to evolve the ability to use lactobionate as a carbon source, a series of mutations must occur in the ebg genes, and that these mutations must be selected in a particular order. The ordered series of mutations constitutes an obligatory evolutionary pathway for the acquisition of a new function for ebgo enzyme. A comparison of newly evolved strains with parental strains shows that when ebg enzyme acquires a new function, its old functions often suffer; but that in several cases old functions are either unaffected or are improved. I conclude that divergence of functions catalyzed by an enzyme need not require gene duplication.  相似文献   

13.
Glutamine synthetase (L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.2) has been purified about 550-fold from sheep spleen. The subunit weight of the enzyme is estimated to be 48 000. Sedimentation coefficient determination by density gradient centrifugation gives a value of 15.0 S. The approximate molecular weight calculated from the S value is 378500. In addition, electron micrographs of the enzyme show an "H" shape. Hence, the protein appears to have eight subunits. In sheep spleen, the enzyme resides chiefly in the soluble fraction of the cell. The amino acid composition of the enzyme from spleen shows similarity to that from other sources. The enzyme activity is nearly five times as high in Mg2+ as in Mn2+. ATP inhibits the enzyme; the inhibition is competitive with respect to Mg2+ATP. A number of compounds, such as D-alanine, AMP, creatine phosphate, arsenite in combination with 2,3-dimercaptopropanol, and 2-amino-4-phosphonobutyrate, also inhibit the enzyme. The inhibition by the last compound is competitive with respect to glutamate. D-Glutamate and alpha-methyl-DL-glutamate can serve as substrates in the synthesis reaction, but N-methyl-DL-glutamate cannot. On the other hand, neither D-glutamine nor N-acetyl-L-glutamine can replace L-glutamine as a substrate in the gamma-glutamyl transfer reaction of the enzyme. Inhibition of Mn2+ and ATP and its reversal by Mg2+ have been discussed as a means of regulating the enzyme activity in mammalian tissues.  相似文献   

14.
The analysis of the antigenic surface of staphylococcal nuclease was begun by generating and characterizing a panel of mAb. Twelve mAb were selected from a large number of anti-nuclease mAb and characterized for affinity and isotype, by their ability to block enzyme activity, and by complementation and competitive inhibition assays for the relative location of epitopes. The mAb were placed in complementation groups based on their distinct binding patterns. These groups define a series of eight overlapping epitopes that are estimated to cover a large portion of the nuclease surface. Four mAb blocked the enzyme activity of nuclease. The epitopes defined by two of these four mAb were localized on the surface of nuclease using single amino acid variant Ag generated by site-directed mutagenesis of the cloned nuclease coding sequence. mAb-25 maps to residue 46 which is located at the edge of the enzyme active site consistent with its ability to inhibit enzyme activity. mAb-19, which also blocks enzyme activity and belongs to the same complementation group as mAb-25, was unaffected by the substitution at position 46. This suggests that mAb-19 and mAb-25, if they do react with the same epitope, have differences in fine specificity. mAb-22 blocks enzyme activity and belongs to an overlapping complementation group. The fourth mAb, mAb-1, which belongs to a distinct, nonoverlapping, complementation group, does not blocks enzyme activity, and is directed to a region of nuclease that includes the amino acid at position 133. This residue is located a short distance from the active site in a region that has been suggested to participate in binding of DNA, a substrate for nuclease. Therefore, the four epitopes defined by these mAb are localized at or near the enzyme active site.  相似文献   

15.
Methylamine dehydrogenase was purified in a homogeneous form from methylamine-grown Pseudomonas sp. J. The specific activity of the purified enzyme was 5.19 at 19 degrees C. The molecular weight was estimated to be 105 000, and the enzyme was composed of two kinds of subunit with molecular weights of 40 000 and 13 000, respectively. The enzyme contained little phosphorus, iron and copper. The enzyme had absorption maxima at 278, 330, 430 and 460 nm (shoulder). On addition of methylamine, the peaks at 430 and 460 nm decreased, while that at 330 nm increased. Primary amines served as substrates, but secondary and tertiary amines did not. Phenazine methosulfate was the most effective electron acceptor and oxygen was ineffective. The enzyme was inhibited by carbonyl reagents, cuprizone and HgCl2 but not by other chelators or sulfhydryl reagents. Some of other physical and biochemical properties of the enzyme were studied. These results show that the enzyme purified from Pseudomonas sp. J is essentially similar to the enzyme obtained from Pseudomonas AM1, although it differs slightly in some properties.  相似文献   

16.
The kinetics of inactivation and reactivation of rabbit skeletal muscle phosphofructokinase have been studied as a function of pH and enzyme concentration at constant temperature in phosphate buffer. From the enzyme concentration dependence, we conclude that the minimal mechanism for inactivation involves a protonation step followed by isomerization to an inactive form and then dissociation to a species of one-half the molecular weight. Other data indicate a subsequent isomerization of the dissociated form. The pH and temperature dependence of the inactivation process shows that it is controlled by ionizable groups, and that the apparent pK for these groups is temperature-dependent in such a way as to make the enzyme show the characteristic of cold lability below pH 7. Reactivation of the inactive enzyme occurs by a kinetically different pathway involving deprotonation of an inactive, dissociated form to a form which may either isomerize to another inactive form, or dimerize to the active enzyme. A general mechanism is postulated in which the inactivation and reactivation processes are different aspects of the same mechanism. This mechanism assumes four species (two containing four subunits and two containing two subunits) each of which can exist in a protonated and unprotonated form. Inactivation or reactivation induced by changes in pH or temperature reflect the kinetic establishment of a new steady state between these forms. How the apparent pK values which control the distribution of the enzyme between protonated and unprotonated forms describe the pH-dependent characteristics of the enzyme is discussed in terms of the proposed mechanism.  相似文献   

17.
A computational approach is used to analyse temporal gene expression in the context of metabolic regulation. It is based on the assumption that cells developed optimal adaptation strategies to changing environmental conditions. Time-dependent enzyme profiles are calculated which optimize the function of a metabolic pathway under the constraint of limited total enzyme amount. For linear model pathways it is shown that wave-like enzyme profiles are optimal for a rapid substrate turnover. For the central metabolism of yeast cells enzyme profiles are calculated which ensure long-term homeostasis of key metabolites under conditions of a diauxic shift. These enzyme profiles are in close correlation with observed gene expression data. Our results demonstrate that optimality principles help to rationalize observed gene expression profiles.  相似文献   

18.
Phosphoenolpyruvate carboxylase from Pseudomonas MA grown on methylamine as a sole carbon source is an allosteric enzyme activated by NADH. Activation is accompanied by a change in the sedimentation value of the enzyme from 12 S to 9 S. In this paper ADP is shown to be an inhibitor of the enzyme. ADP has its most potent effect on the NADH-activated enzyme. Kinetics of ADP inhibition in the presence of NADH and of NADH activation in the presence of ADP are allosteric. The presence of ADP prevents the decrease in sedimentation value in the presence of NADH. Cross-linking studies indicate that the 12 S form of the enzyme is a tetramer of identically sized subunits and that the 9 S form corresponds to a dimer. The cross-linked enzyme is active and is activated by NADH and inhibited by ADP. It is proposed that NADH and ADP are a regulatory pair for this enzyme and reflect the energy status of the organism, allowing the carboxylase to control the flow of carbon into anabolic or catabolic pathways.  相似文献   

19.
RecBCD enzyme acts in the major pathway of homologous recombination of linear DNA in Escherichia coli. The enzyme unwinds DNA and is an ATP-dependent double-strand and single-strand exonuclease and a single-strand endonuclease; it acts at Chi recombination hotspots (5'-GCTGGTGG-3') to produce a recombinogenic single-stranded DNA 3'-end. We found that a small RNA with a unique sequence of approximately 24 nt was tightly bound to RecBCD enzyme and co-purified with it. When added to native enzyme this RNA, but not four others, increased DNA unwinding and Chi nicking activities of the enzyme. In seven similarly active enzyme preparations the molar ratio of RNA molecules to RecBCD enzyme molecules ranged from 0.2 to <0.008. These results suggest that, although this unique RNA is not an essential enzyme subunit, it has a biological role in stimulating RecBCD enzyme activity.  相似文献   

20.
Acetyl-CoA carboxylase and fatty acid synthetase are the two major enzymes involved in the synthesis of fatty acids in animals. The activities of both enzymes are affected by nutritional manipulations. Although acetyl-CoA carboxylase is considered generally to be the rate-limiting step in lipogenesis, there is evidence that suggests that fatty acid synthetase may become rate limiting under certain conditions. The principal support for the view that acetyl-CoA carboxylase is the rate-limiting enzyme for lipogenesis is that the activity of the enzyme is controlled by allosteric effectors that change the catalytic efficiency of the enzyme. Until recently, the only known control of fatty acid synthetase was through changes in rate of enzyme synthesis. Data are reviewed that show that fatty acid synthetase can exist in forms possessing different catalytic activities. Thus fatty acid synthetase appears to be subject to the type of control necessary for an enzyme to serve as a regulator of the rate of a biological process over a short term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号