首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heterozygous elastin gene mutations cause autosomal dominant cutis laxa associated with emphysema and aortic aneurysms. To investigate the molecular mechanisms leading to cutis laxa in vivo, we generated transgenic mice by pronuclear injection of minigenes encoding normal human tropoelastin (WT) or tropoelastin with a cutis laxa mutation (CL). Three independent founder lines of CL mice showed emphysematous pulmonary airspace enlargement. No consistent dermatological or cardiovascular pathologies were observed. One CL and one WT line were selected for detailed studies. Both mutant and control transgenic animals showed elastin deposition into pulmonary elastic fibers, indicated by increased desmosine levels in the lung and by colocalization of transgenic and endogenous elastin by immunostaining. CL mice showed increased static lung compliance and decreased stiffness of lung tissue. In addition, markers of transforming growth factor-β (TGFβ) signaling and the unfolded protein response (UPR) were elevated together with increased apoptosis in the lungs of CL animals. We conclude that the synthesis of mutant elastin in CL activates multiple downstream disease pathways by triggering a UPR, altered mechanical signaling, increased release of TGFβ and apoptosis. We propose that the combined effects of these processes lead to the development of an emphysematous pulmonary phenotype in CL.  相似文献   

3.
4.
Summary Mutations in the gene coding for the ABC transporter, ABCC6, in humans cause Pseudoxanthoma elasticum, which is characterized by the deposition of aberrant elastic fibers. To investigate whether the presence of ABCC6 in tissues synthesizing elastin is required for elastin deposition and elastic fiber assembly, we have compared the steady-state levels and tissue distribution of Abcc6 and tropoelastin mRNAs during mouse embryogenesis. Whereas tropoelastin mRNA levels rose during embryogenesis and were the highest in neonatal mice, Abcc6 mRNA levels remained constantly low throughout embryogenesis. In some tissues, both Abcc6 and tropoelastin mRNA were detected. However, Abcc6 mRNA and protein were not detected in neonatal aorta and arteries, which produce large amounts of elastin indicating that the presence of Abcc6 in elastic tissues is not required for elastic fiber assembly.  相似文献   

5.
Based on our preliminary observation of abnormal glycosylation in a cutis laxa patient, nine cutis laxa patients were analyzed for congenital defects of glycosylation (CDG). Isoelectric focusing of plasma transferrin and apolipoproteinC-III showed that three out of nine patients had a defect in the biosynthesis of N-glycans and core 1 mucin type O-glycans, respectively. Mass spectrometric N-glycan analyses revealed a relative increase of glycans lacking sialic acid and glycans lacking sialic acid and galactose residues. Mutation analysis of the fibulin-5 gene (FBLN5), which has been reported in cases of autosomal recessive cutis laxa, revealed no mutations in the patients' DNA. Evidence is presented that extracellular matrix (ECM) proteins of skin are likely to be highly glycosylated with N- and/or mucin type O-glycans by using algorithms for predicting glycosylation. The conclusions in this study were that the clinical phenotype of autosomal recessive cutis laxa seen in three patients is not caused by mutations in the FBLN5 gene. Our findings define a novel form of CDG with cutis laxa and neurological involvement due to a defect in the sialylation and/or galactosylation of N- and O-glycans. Improper glycosylation of ECM proteins of skin may form the pathophysiological basis for the cutis laxa phenotype.  相似文献   

6.
The clinical features and the plastic surgery management of a 23-year-old woman with cutis laxa are presented. Two rhytidectomies were performed in this patient within 1 year. The first was associated with a SMAS flap; the second employed a prehairline incision. The evolution of the aging facial appearance 10 years after the last face lift was evaluated and compared with the preoperative situation. Repeated face lifts seem to be an interesting way to manage patients with cutis laxa. Unlike patients with other disorders of the connective tissue, those with cutis laxa have no vascular fragility and heal well. The role of plastic surgery and the clinical features and timing for operation are reviewed and discussed.  相似文献   

7.
8.
Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.  相似文献   

9.
Elastic fiber assembly is a complicated process involving multiple different proteins and enzyme activities. However, the specific protein-protein interactions that facilitate elastin polymerization have not been defined. To identify domains in the tropoelastin molecule important for the assembly process, we utilized an in vitro assembly model to map sequences within tropoelastin that facilitate its association with fibrillin-containing microfibrils in the extracellular matrix. Our results show that an essential assembly domain is located in the C-terminal region of the molecule, encoded by exons 29-36. Fine mapping studies using an exon deletion strategy and synthetic peptides identified the hydrophobic sequence in exon 30 as a major functional element in this region and suggested that the assembly process is driven by the propensity of this sequence to form beta-sheet structure. Tropoelastin molecules lacking the C-terminal assembly domain expressed as transgenes in mice did not assemble nor did they interfere with assembly of full-length normal mouse elastin. In addition to providing important information about elastin assembly in general, the results of this study suggest how removal or alteration of the C terminus through stop or frameshift mutations might contribute to the elastin-related diseases supravalvular aortic stenosis and cutis laxa.  相似文献   

10.
The precise biochemical defects in connective-tissue metabolism that are responsible for the laxity of skin seen in the syndrome of cutis laxa are largely unknown. We have studied fibroblasts cultured from skin explants of a 2-year-old male with the syndrome. Electron-microscopic examination of this skin revealed decreased amounts of amorphous elastin and an increase in elastin-associated microfibrils. Although the cultured fibroblasts were similar to control skin fibroblasts in morphology, growth rate and total protein synthesis, there was a 4-6-fold increase in accumulation of a collagenous protein of Mr 140 000 in both the culture medium and in the cell layer. This protein was structurally distinct from collagen types I, III, IV, V and VIII. It was found to be related to a cell-surface-associated glycoprotein, GP140, by both antigenic cross-reactivity and peptide mapping. Our data support observations that GP140 is a precursor of at least one form of pepsin-extracted type VI collagen.  相似文献   

11.
A complementary DNA (cDNA) clone was constructed for chick pro alpha 2(I) collagen mRNA. This and previously constructed cDNA clones for chick and human pro alpha 1(I) collagen mRNAs were used to measure levels of type I procollagen messenger RNAs in two experimental models: viscose cellulose sponge-induced experimental granulation tissue and silica-induced experimental lung fibrosis in rats. Both Northern RNA blot and RNA dot hybridizations were used to quantitate procollagen mRNAs during formation of granulation tissue. The period of rapid collagen synthesis was characterized by high levels of procollagen mRNAs, which were reduced when collagen production returned to a low basal level. The rate of collagen synthesis and the levels of procollagen mRNAs during the period of rapid reduction in collagen production did not, however, parallel with each other. This suggests that translational control mechanisms are important during this time in preventing overproduction of collagen. In silicotic lungs, the early stages of fibroblast activation follow a similar path but appear faster. At a later stage, however, the RNA levels increase again and permit collagen synthesis to continue at a high rate, resulting in massive collagen accumulation.  相似文献   

12.
The data presented clearly suggest that relative amounts of mRNAs for elastins a, b and c are developmentally regulated in foetal-calf nuchal ligament and aorta and that this regulation is tissue-specific. In nuchal ligament, at earlier stages of foetal development, the relative amounts of mRNAs for elastins a and b are very low. After the foetal age of about 6 months the relative amount of mRNA for elastin b begins to increase. This is followed by an increase in the relative amount of mRNA for elastin a. In aorta, with increasing foetal age, the relative amounts of mRNAs for elastins b and c increase and decrease alternately. The relative amounts of mRNA for elastin a remain low, with only marginal increases with foetal age. A possible self-aggregation role of elastin a in elastogenesis is proposed.  相似文献   

13.
Activation of type I collagen genes in cultured scleroderma fibroblasts   总被引:2,自引:0,他引:2  
Fibroblasts cultured from affected skin areas of five patients with cutaneous scleroderma were found to produce increased amounts of collagen when compared with nonaffected control cells. Total RNA was isolated from the cultures and analyzed for its level of pro alpha 1 (I)collagen mRNA by hybridization of RNA blots with a cloned cDNA probe. The levels of pro alpha 1 (I)collagen mRNAs relative to total RNA were two- to sixfold higher in the samples from affected cells, accounting for the increased synthesis of type I collagen. Cytoplasmic dot hybridizations were performed to measure the cellular content of pro alpha 1 (I)collagen mRNA: up to ninefold increases in the level of this mRNA per cell were found. Upon subculturing, scleroderma fibroblasts were found to reduce gradually the increased synthesis of collagen to the level of nonaffected controls by the tenth passage. The levels of type I collagen mRNAs were also reduced, but more slowly. The results suggest that in scleroderma fibroblasts the genes for type I collagen are activated at procollagen mRNA level or that they are more stable and that the activating factors are lost during prolonged cell culture because cells from affected areas lose their activated state.  相似文献   

14.
Summary A mother and daughter are described with light and electron microscopic, and biochemical abnormalities of their connective tissue characteristic of both cutis laxa and the Ehlers-Danlos syndrome. The mother was clinically normal, while her 8-year-old daughter exhibited loose, wrinkled skin and other clinical features of cutis laxa, and also fragility, bruisability and hyper-extensibility of the skin and poor healing of wounds, leaving cigarette paper scars, features characteristic of the Ehlers-Danlos syndrome. Light and electron microscopic studies of skin biopsy specimens and cultured skin fibroblasts from both individuals revealed reduced and distorted elastic fibres, a finding usually seen in cutis laxa. Electrophoretic studies of collagen excreted from cultured skin fibrobasts revealed in both individuals and alpha 2(I) chain with a molecular size smaller than usual. The father and elder daughter were normal by clinical, light and electron microscopic and electrophoretic studies. It was concluded from these findings that the mother and daughter represented a hitherto undescrbed disease of the connective tissue with dominant inheritance and variable expressivity.  相似文献   

15.
Defects leading to impaired intracellular trafficking have recently been shown to play an important role in the pathogenesis of genodermatoses, such as the Ehlers–Danlos and the cutis laxa syndromes. A new genodermatosis, termed macrocephaly, alopecia, cutis laxa and scoliosis (MACS) syndrome has been described, resulting from a homozygous 1-bp deletion in RIN2. RIN2 encodes the Ras and Rab interactor 2, involved in the regulation of Rab5-mediated early endocytosis. We performed a clinical, ultrastructural and molecular study in a consanguineous Algerian family with three siblings affected by a distinctive autosomal recessive genodermatosis, reported in 2005 by Verloes et al. The most striking clinical features include progressive facial coarsening, gingival hypertrophy, severe scoliosis, sparse hair and skin and joint hyperlaxity. Ultrastructural studies of the skin revealed important abnormalities in the collagen fibril morphology, and fibroblasts exhibited a dilated endoplasmic reticulum and an abnormal Golgi apparatus with rarefied and dilated cisternae. Molecular analysis of RIN2 revealed a novel homozygous 2-bp deletion in all affected individuals. The c.1914_1915delGC mutation introduces a frameshift and creates a premature termination codon, leading to nonsense-mediated mRNA decay. These findings confirm that RIN2 defects are associated with a distinct genodermatosis and underscore the involvement of RIN2 and its associated pathways in the pathogenesis of connective tissue disorders. The current family displays considerable phenotypic overlap with MACS syndrome. However, our family shows a dermatological and ultrastructural phenotype belonging to the Ehlers–Danlos rather than the cutis laxa spectrum. Therefore, the MACS acronym is not entirely appropriate for the current family.  相似文献   

16.
Transition protein 2 is a basic chromosomal protein which functions as an intermediate in the replacement of histones by protamines, and the mitochondrial capsule seleno-protein is a constituent of the outer membrane of mitochondria which functions in constructing the mitochondrial sheath surrounding the flagellum. To determine precisely the stages in spermatogenesis when these mRNAs are present, paraffin sections of sexually mature testes were hybridized to 35S- and 3H-labeled antisense RNAs and exposed to autoradiographic emulsion. The cell types hybridizing to probes in situ were determined by staining with hematoxylin and periodic acid Schiff. The in situ hybridizations reveal that the transition protein 2 mRNA is first detectable in step 7 round spermatids, persists at high levels through step 13, and is degraded before step 14. By contrast, the mitochondrial capsule seleno-protein mRNA is first detected in step 3 round spermatids and persists at high levels until step 16, the end of spermiogenesis. The mitochondrial capsule seleno-protein mRNA appears to be expressed only in haploid cells since low levels could not be detected in Northern blots of RNA from pachytene primary spermatocytes from 18 day prepubertal mice. These results demonstrate that the transition protein 2 and mitochondrial capsule seleno-protein mRNAs are transcribed and degraded at different times during the haploid phase of spermatogenesis.  相似文献   

17.
The expression of mRNAs for type I and type II procollagens, transforming growth factor-beta (TGF-beta) and c-fos was studied in developing human long bones by Northern blotting and in situ hybridization. The cells producing bone and cartilage matrix were identified by hybridizations using cDNA probes for types I and II collagen, respectively. Northern blotting revealed that the highest levels of TGF-beta mRNA were associated with the growth plates. By in situ hybridization, this mRNA was localized predominantly in the osteoblasts and osteoclasts of the developing bone, in periosteal fibroblasts and in individual bone marrow cells. These findings are consistent with the view that TGF-beta may have a role in stimulation of type I collagen production and bone formation. Only a low level of TGF-beta mRNA was detected in cartilage where type II collagen mRNA is abundant. In Northern hybridization, the highest levels of c-fos mRNA were detected in epiphyseal cartilage. In situ hybridization revealed two cell types with high levels of c-fos expression: the chondrocytes bordering the joint space and the osteoclasts of developing bone. These differential expression patterns suggest specific roles for TGF-beta and c-fos in osseochondral development.  相似文献   

18.
Cutis laxa is a condition characterized by redundant, pendulous, and inelastic skin. We identified a patient with recessive inheritance of a missense mutation (169G-->A; E57K) in the Fibulin-4 gene. She had multiple bone fractures at birth and was diagnosed with cutis laxa, vascular tortuosity, ascending aortic aneurysm, developmental emphysema, inguinal and diaphragmatic hernia, joint laxity, and pectus excavatum by age 2 years. Her skin showed markedly underdeveloped elastic fibers, and the extracellular matrix laid down by her skin fibroblasts contained dramatically reduced amounts of fibulin-4. We conclude that fibulin-4 is necessary for elastic fiber formation and connective tissue development.  相似文献   

19.
Tissue remodeling is an adaptive response to mechanical tension in the lung. However, the role of pulmonary fibroblasts in this response has not been well characterized. This study investigates the influence of extracellular matrix on the response of fibroblasts to mechanical strain. Cells were cultured on flexible-bottom surfaces coated with fibronectin, laminin, or elastin and exposed to strain. Under these conditions, fibroblasts align perpendicular to the force vector. This stimulus results in an increase in alpha(1)(I) procollagen mRNA in cells cultured on laminin or elastin but not fibronectin. Increased alpha(1)(I) procollagen mRNA was detected 6 h after exposure to strain and reached control levels by 72 h. [(3)H]proline incorporation into newly synthesized procollagen reflects changes in mRNA levels. Strained fibroblasts cultured on laminin or elastin incorporated 190 and 114%, respectively, more [(3)H]proline into procollagen than did unstrained cells. No difference was detected in strained fibroblasts cultured on fibronectin. These results suggest that fibroblasts respond to mechanical strain in vitro, and this response is signaled by cell-extracellular matrix interactions.  相似文献   

20.
To elucidate the pathomechanism leading to obstructive vascular disease in patients with elastin deficiency, we compared both elastogenesis and proliferation rate of cultured aortic smooth-muscle cells (SMCs) and skin fibroblasts from five healthy control subjects, four patients with isolated supravalvular aortic stenosis (SVAS), and five patients with Williams-Beuren syndrome (WBS). Mutations were determined in each patient with SVAS and in each patient with WBS. Three mutations found in patients with SVAS were shown to result in null alleles. RNA blot hybridization, immunostaining, and metabolic labeling experiments demonstrated that SVAS cells and WBS cells have reduced elastin mRNA levels and that they consequently deposit low amounts of insoluble elastin. Although SVAS cells laid down approximately 50% of the elastin made by normal cells, WBS cells deposited only 15% of the elastin made by normal cells. The observed difference in elastin-gene expression was not caused by a difference in the stability of elastin mRNA in SVAS cells compared with WBS cells, but it did indicate that gene-interaction effects may contribute to the complex phenotype observed in patients with WBS. Abnormally low levels of elastin deposition in SVAS cells and in WBS cells were found to coincide with an increase in proliferation rate, which could be reversed by addition of exogenous insoluble elastin. We conclude that insoluble elastin is an important regulator of cellular proliferation. Thus, the reduced net deposition of insoluble elastin in arterial walls of patients with either SVAS or WBS leads to the increased proliferation of arterial SMCs. This results in the formation of multilayer thickening of the tunica media of large arteries and, consequently, in the development of hyperplastic intimal lesions leading to segmental arterial occlusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号