首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein(a) [apo(a)] shares extensive sequence similarity with plasminogen and consists of multiple tandem repeats of domains similar to plasminogen kringle IV (KIV), followed by domains homologous to the plasminogen KV and protease domains. The apo(a) KIV domains can be classified into 10 types on the basis of amino acid sequence (KIV(1)-KIV(10)) of which KIV(10) contains a canonical lysine binding site (LBS); KIV(10) mediates the lysine-dependent interaction of Lp(a) with certain biological substrates. Molecular modeling studies indicated the presence of weak LBS in each of KIV(5)-KIV(8), and subsequent biochemical studies have revealed contributions of these kringles to lysine-mediated interactions involving apo(a). The present study describes the direct demonstration of a weak LBS within KIV(7), as well as the first characterization of the ligand specificity of an LBS outside that of KIV(10). We have expressed both KIV(7) and KIV(10) from bacterial cells and purified them to homogeneity from cell lysates. Equilibrium binding analyses of the KIV(7) LBS using intrinsic fluorescence revealed an affinity for L-lysine and its analogues approximately 10-fold weaker (K(D) = 230 +/- 42 microM for epsilon-aminocaproic acid) than that of KIV(10) (K(D) = 33 +/- 4 microM for epsilon-aminocaproic acid). Moreover, we demonstrated differences in specificity of the LBS of KIV(7) in comparison with KIV(10) in that KIV(7) preferentially bound L-proline. Both kringles bind 4-aminobutyric acid with similar affinities albeit with apparently different mechanisms. Key Phe(62) --> Tyr and Asp(56) --> Glu substitutions in the KIV(7) LBS result in alterations in the size of the LBS and in the spatial relationship between the cationic and anionic centers in the LBS and thus account for the differences in the binding properties of KIV(7) and KIV(10).  相似文献   

2.
The plasma lipoprotein lipoprotein(a) [Lp(a)] comprises a low-density lipoprotein (LDL)-like particle covalently attached to the glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) consists of multiple tandem repeating kringle modules, similar to plasminogen kringle IV (designated KIV1-KIV10), followed by modules homologous to the kringle V module and protease domain of plasminogen. The apo(a) KIV modules have been classified on the basis of their binding affinity for lysine and lysine analogues. The strong lysine-binding apo(a) KIV10 module mediates lysine-dependent interactions with fibrin and cell-surface receptors. Weak lysine-binding apo(a) KIV7 and KIV8 modules display a 2-3-fold difference in lysine affinity and play a direct role in the noncovalent step in Lp(a) assembly through binding to unique lysine-containing sequences in apolipoproteinB-100 (apoB-100). The present study describes the nuclear magnetic resonance solution structure of apo(a) KIV8 and its solution dynamics properties, the first for an apo(a) kringle module, and compares the effects of epsilon-aminocaproic acid (epsilon-ACA) binding on the backbone and side-chain conformation of KIV7 and KIV8 on a per residue basis. Apo(a) KIV8 adopts a well-ordered structure that shares the general tri-loop kringle topology with apo(a) KIV6, KIV7, and KIV10. Mapping of epsilon-ACA-induced chemical-shift changes on KIV7 and KIV8 indicate that the same residues are affected, despite a 2-3-fold difference in epsilon-ACA affinity. A unique loop conformation within KIV8, involving hydrophobic interactions with Tyr40, affects the positioning of Arg35 relative to the lysine-binding site (LBS). A difference in the orientation of the aromatic side chains comprising the hydrophobic center of the LBS in KIV8 decreases the size of the hydrophobic cleft compared to other apo(a) KIV modules. An exposed hydrophobic patch contiguous with the LBS in KIV8 and not conserved in other weak lysine-binding apo(a) kringle modules may modulate specificity for regions within apoB-100. An additional ligand recognition site comprises a structured arginine-glycine-aspartate motif at the N terminus of the KIV8 module, which may mediate Lp(a)/apo(a)-integrin interactions.  相似文献   

3.
Lin LF  Houng A  Reed GL 《Biochemistry》2000,39(16):4740-4745
Lysine side chains induce conformational changes in plasminogen (Pg) that regulate the process of fibrinolysis or blood clot dissolution. A lysine side-chain mimic, epsilon amino caproic acid (EACA), enhances the activation of Pg by urinary-type and tissue-type Pg activators but inhibits Pg activation induced by streptokinase (SK). Our studies of the mechanism of this inhibition revealed that EACA (IC(50) 10 microM) also potently blocked amidolytic activity by SK and Pg at doses nearly 10000-fold lower than that required to inhibit the amidolytic activity of plasmin. Different Pg fragments were used to assess the role of the kringles in mediating the inhibitory effects of EACA: mini-Pg which lacks kringles 1-4 of Glu-Pg and micro-Pg which lacks all kringles and contains only the catalytic domain. SK bound with similar affinities to Glu-Pg (K(A) = 2.3 x 10(9) M(-1)) and to mini-Pg (K(A) = 3.8 x 10(9) M(-)(1)) but with significantly lower affinity to micro-Pg (K(A) = 6 x 10(7) M(-)(1)). EACA potently inhibited the binding of Glu-Pg to SK (K(i) = 5.7 microM), but was less potent (K(i) = 81.1 microM) for inhibiting the binding of mini-Pg to SK and had no significant inhibitory effects on the binding of micro-Pg and SK. In assays simulating substrate binding, EACA also potently inhibited the binding of Glu-Pg to the SK-Glu-Pg activator complex, but had negligible effects on micro-Pg binding. Taken together, these studies indicate that EACA inhibits Pg activation by blocking activator complex formation and substrate binding, through a kringle-dependent mechanism. Thus, in addition to interactions between SK and the protease domain, interactions between SK and the kringle domain(s) play a key role in Pg activation.  相似文献   

4.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

5.
The binding of alpha-, omega-amino acids, which are important effectors of human plasminogen activation, to the isolated kringle 4 (K4) peptide region of this protein has been investigated by high sensitivity titration calorimetry. The titration curve of the heat changes accompanying binding of the widely employed ligand, epsilon-aminocaproic acid (EACA), to K4 were deconvoluted to yield the following binding characteristics: n = 0.87 +/- 0.08 mol/mol; Ka = 3.82 +/- 0.37 x 10(4) M-1; delta H = -4.50 +/- 0.22 kcal/mol; delta S = 6.01 +/- 0.7 entropy units; and delta G = 6.29 +/- 0.06 kcal/mol. Here, both delta H and delta S provide the driving force of the interaction, with both hydrogen bonds and hydrophobic interactions, the latter which may result from an induced conformational change in K4 upon ligand binding, as well as possible alterations in peptide-bound water structure, providing the stabilizing forces for complex formation. The thermodynamic binding parameters were not greatly influenced by pH between the values of 5.5 and 8.2, suggesting that titratable groups on K4 in this pH region did not influence the binding. Investigations of the binding properties of structural analogues of EACA to K4 demonstrated that definable steric requirements existed for a maximal interaction, with spacing between the functional groups on EACA, as well as a hydrophobic region of this molecule, being important. This rapid and reliable method for measuring all thermodynamic parameters of formation of this complex at a given temperature can now be employed to investigate this important interaction with a wide variety of kringles and modified kringles to provide a more complete understanding of the necessary factors for this binding to occur.  相似文献   

6.
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein complex consisting of apolipoprotein(a) [apo(a)] disulfide-linked to apolipoprotein B-100. Lp(a) has been implicated in atherogenesis and thrombosis through the lysine binding site (LBS) affinity of its kringle domains. We have examined the oxidative effect of 2,2'-azobis-(amidinopropane) HCl (AAPH), a mild hydrophilic free radical initiator, upon the ability of Lp(a) and recombinant apo(a), r-apo(a), to bind through their LBS domains. AAPH treatment caused a time-dependent decrease in the number of functional Lp(a) or r-apo(a) molecules capable of binding to fibrin or lysine-Sepharose and in the intrinsic protein fluorescence of both Lp(a) and r-apo(a). The presence of a lysine analogue during the reaction prevented the loss of lysine binding and provided a partial protection from the loss of tryptophan fluorescence. The partial protection of fluorescence by lysine analogues was observed in other kringle-containing proteins, but not in proteins lacking kringles. No significant aggregation, fragmentation, or change in conformation of Lp(a) or r-apo(a) was observed as assessed by native or SDS-PAGE, light scattering, retention of antigenicity, and protein fluorescence emission spectra. Our results suggest that AAPH destroys amino acids in the kringles of apo(a) that are essential for lysine binding, including one or more tryptophan residues. The present study, therefore, raises the possibility that the biological roles of Lp(a) may be mediated by its state of oxidation, especially in light of our previous study showing that the reductive properties of sulfhydryl-containing compounds increase the LBS affinity of Lp(a) for fibrin.  相似文献   

7.
Apolipoprotein(a) [apo(a)] consists of a series of tandemly repeated modules known as kringles that are commonly found in many proteins involved in the fibrinolytic and coagulation cascades, such as plasminogen and thrombin, respectively. Specifically, apo(a) contains multiple tandem repeats of domains similar to plasminogen kringle IV (designated as KIV(1) to KIV(10)) followed by sequences similar to the kringle V and protease domains of plasminogen. The KIV domains of apo(a) differ with respect to their ability to bind lysine or lysine analogs. KIV(10) represents the high-affinity lysine-binding site (LBS) of apo(a); a weak LBS is predicted in each of KIV(5)-KIV(8) and has been directly demonstrated in KIV(7). The present study describes the first crystal structure of apo(a) KIV(7), refined to a resolution of 1.45 A, representing the highest resolution for a kringle structure determined to date. A critical substitution of Tyr-62 in KIV(7) for the corresponding Phe-62 residue in KIV(10), in conjunction with the presence of Arg-35 in KIV(7), results in the formation of a unique network of hydrogen bonds and electrostatic interactions between key LBS residues (Arg-35, Tyr-62, Asp-54) and a peripheral tyrosine residue (Tyr-40). These interactions restrain the flexibility of key LBS residues (Arg-35, Asp-54) and, in turn, reduce their adaptability in accommodating lysine and its analogs. Steric hindrance involving Tyr-62, as well as the elimination of critical ligand-stabilizing interactions within the LBS are also consequences of this interaction network. Thus, these subtle yet critical structural features are responsible for the weak lysine-binding affinity exhibited by KIV(7) relative to that of KIV(10).  相似文献   

8.
We have generated site-specific mutants of the kringle 2 domain of tissue-type plasminogen activator [( K2tPA]) in order to identify directly the cationic center of the protein that is responsible for its interaction with the carboxyl group of important omega-amino acid effector molecules, such as epsilon-amino caproic acid (EACA). Molecular modeling of [K2tPA], docked with EACA, based on crystal structures of the kringle 2 region of prothrombin and the kringle 4 domain of human plasminogen, clearly shows that Lys33 is the only positively charged amino acid in [K2tPA] that is sufficiently proximal to the carboxyl group of the ligand to stabilize this interaction. In order to examine directly the importance of this particular amino acid residue in this interaction, we have constructed, expressed, and purified three recombinant (r) mutants of [K2tPA], viz., Lys33Thr, Lys33Leu, and Lys33Arg, and found that only the last variant retained significant ability to interact with EACA and several of its structural analogues at neutral pH. In addition, another mutated r-[K2tPA], i.e., Lys33His, interacts very weakly with omega-amino acids at neutral pH and much more strongly at lower pH values where His33 would be expected to undergo protonation. This demonstrates that any positively charged amino acid at position 33 satisfies the requirement for mediation of significant bindings to this class of molecules. Since, in other kringles, positively charged residues at amino acid sequence positions homologous to Lys68, Arg70, and Arg71 of [K2tPA] have been found to participate in kringle interactions with EACA-like compounds, we have also examined the binding of EACA, and some of its analogues, to three additional r-[K2tPA] variants, i.e., Lys68Ala, Arg70Ala, and Arg71Ala. In each case, binding of these omega-amino acids to the variant kringles was observed, with only the Lys68Ala variant showing a slightly diminished capacity for this interaction. These investigations provide clear and direct evidence that Lys33 is the principal cationic site in wild-type r-[K2tPA] that directly interacts with the carboxyl group of omega-amino acid effector molecules.  相似文献   

9.
The role of W74 in stabilization of the binding of omega-amino acids to the recombinant (r) kringle 2 domain (residues 180-261) of tissue-type plasminogen activator ([K2tPA]) has been assessed by examination of the binding (dissociation) constants (Kd) of epsilon-aminocaproic acid (EACA) and one of its structural analogues, 7-aminoheptanoic acid (7-AHpA), to variants of r-[K2tPA] generated by site-directed mutagenesis of the wild-type kringle domain. Two nonconservative mutations at W74 of r-[K2tPA] have been constructed, expressed, and purified, resulting in one variant molecule containing a W74L mutation (r-[K2tPA/W74L]) and another containing a W74S mutation (r-[K2tPA/W74S]). In both cases, binding of EACA and 7-AHpA was virtually eliminated in the mutated kringles. Two additional conservative mutations at W74 of r-[K2tPA] have been similarly generated, resulting in r-[K2tPA/W74F] and r-[K2tPA/W74Y]. For these mutants, binding of the same ligands to the variant recombinant kringle domain is retained, although it is significantly weaker in nature. The 1H-NMR spectra of each of the variant kringles demonstrates that all retain the general gross conformations of their wild-type counterpart but that some environmental changes of proton resonances occur at particular aromatic amino acid residues that may be involved in omega-amino acid binding. Differential scanning calorimetric analyses of each of the variant kringles suggest that none of the mutations led to substantial destabilization of their structures, again suggestive of gross conformational similarities in all r-[K2tPA] molecules constructed. We conclude that the aromatic character present at position 74 of wild-type r-[K2tPA] is of great importance to its ability to interact with omega-amino acid ligands, with tryptophan being the most effective amino acid at that position.  相似文献   

10.
M R Rejante  I J Byeon  M Llinás 《Biochemistry》1991,30(46):11081-11092
The ligand specificity of the human plasminogen kringle 4 was characterized in terms of ligand size, aromatic/aliphatic character, and ionic charge distribution. The binding of the following ligands was investigated via 1H NMR spectroscopy, and their equilibrium association constants (Ka) were determined: (1) p-aminomethylbenzoic acid (Ka approximately 4.8 mM-1), (2) benzylamine (Ka approximately 0.2 mM-1), (3) l-aminohexane (Ka approximately 0.07 mM-1), (4) 7-aminoheptanoic acid (Ka approximately 6.6 mM-1), (5) 5-aminopentanoic acid (Ka approximately 16 mM-1), (6) N alpha-acetyl-L-arginine (Ka approximately 0.3 mM-1), and (7) N alpha-acetyl-L-arginine methyl ester (Ka approximately 0.08 mM-1). Benzamidine and L-arginine do not bind measurably to kringle 4. We have also established that 1-hexanoic acid and 4-methylbenzoic acid do not interact significantly with kringle 4 (Ka less than 0.05 mM-1). The Trp62 resonances were found to be quite sensitive to aromatic ligands as well as to aliphatic ligand length. Phe64 is similarly sensitive to the ligand aromatic/aliphatic character and chain length and to the identity of the ligand anionic group. His31 and His33 do not respond significantly to variations in ligand structure, although they are perturbed by aromatic and aliphatic effectors. The perturbations induced by the arginine derivatives on these residues show that these compounds interact with the lysine-binding site (LBS) of kringle 4. The LBS was further characterized using 2D NMR studies of a kringle 4/trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) complex. A complete assignment of the AMCHA spectrum in the bound state was achieved. This enabled the unambiguous identification of intermolecular contact points between the central AMCHA protons and Trp62 and Trp72. A model based on the X-ray crystallographic structure of kringle 4, incorporating these constraints, has been derived.  相似文献   

11.
次黄嘌呤单核苷酸脱氢酶(IMPDH)是金黄色葡萄球菌(S.aureus)表面的纤溶酶原(Plg)受体之一,它可以通过赖氨酸结合位点(LBS)与Plg相结合。脂蛋白(a)[Lp(a)]中的载脂蛋白(a)[Apo(a)]与Plg有很高的同源性,即两者的Kringle结构域都含有LBS,其中Apo(a)的KIV10含有强的LBS。因此本实验提出了Lp(a)应该能够与S.aureus表面的Plg受体相结合,进而可能竞争性抑制S.aureus与Plg结合的假说。本研究克隆了S.aureus的IMPDH基因,酶切后将其连接到表达载体pASK-IBA37中,并在大肠杆菌BL21中表达了该重组蛋白(rIMPDH)。通过酶联免疫吸附试验(ELISA)、亲和色谱层析及Western blot对rIMPDH与Lp(a)的相互作用机制进行了研究。结果表明rIMPDH可以通过LBS与Lp(a)和rKIV10发生特异性结合,而且一定浓度的赖氨酸类似物6-氨基己酸(EACA)可以抑制这种结合,然而本研究并未发现Lp(a)和rKIV10对rIMPDH与Plg的相互作用有明显的抑制。  相似文献   

12.
Apolipoprotein[a], the highly glycosylated, hydrophilic apoprotein of lipoprotein[a] (Lp[a]), is generally considered to be a multimeric homologue of plasminogen, and to exhibit atherogenic/thrombogenic properties. The cDNA-inferred amino acid sequence of apo[a] indicates that apo[a], like plasminogen and some zymogens, is composed of a kringle domain and a serine protease domain. To gain insight into possible positive functions of Lp[a], we have examined the apo[a] primary structure by comparing its sequence with those of other proteins involved in coagulation and fibrinolysis, and its secondary structure by using a combination of structure prediction algorithms. The kringle domain encompasses 11 distinct types of repeating units, 9 of which contain 114 residues. These units, called kringles, are similar but not identical to each other or to PGK4. Each apo[a] kringle type was compared with kringles which have been shown to bind lysine and fibrin, and with bovine prothrombin kringle 1. Apo[a] kringles are linked by serine/threonine- and proline-rich stretches similar to regions in immunoglobulins, adhesion molecules, glycoprotein Ib-alpha subunit, and kininogen. In comparing the protease domains of apo[a] and plasmin, apo[a] contains a region between positions 4470 and 4492 where 8 substitutions, 9 deletions, and 1 insertion are apparent. Our analysis suggests that apo[a] kringle-type 10 has a high probability of binding to lysine in the same way as PGK4. In the only human apo[a] polymorph sequenced to date, position 4308 is occupied by serine, whereas the homologous position in plasmin is occupied by arginine and is an important site for proteolytic cleavage and activation. An alternative site for the proteolytic activation of human apo[a] is proposed.  相似文献   

13.
Ahn JH  Lee HJ  Lee EK  Yu HK  Lee TH  Yoon Y  Kim SJ  Kim JS 《Biological chemistry》2011,392(4):347-356
Many proteins in the fibrinolysis pathway contain antiangiogenic kringle domains. Owing to the high degree of homology between kringle domains, there has been a safety concern that antiangiogenic kringles could interact with common kringle proteins during fibrinolysis leading to adverse effects in vivo. To address this issue, we investigated the effects of several antiangiogenic kringle proteins including angiostatin, apolipoprotein(a) kringles IV(9)-IV(10)-V (LK68), apolipoprotein(a) kringle V (rhLK8) and a derivative of rhLK8 mutated to produce a functional lysine-binding site (Lys-rhLK8) on the entire fibrinolytic process in vitro and analyzed the role of lysine binding. Angiostatin, LK68 and Lys-rhLK8 increased clot lysis time in a dose-dependent manner, inhibited tissue-type plasminogen activator-mediated plasminogen activation on a thrombin-modified fibrinogen (TMF) surface, showed binding to TMF and significantly decreased the amount of plasminogen bound to TMF. The inhibition of fibrinolysis by these proteins appears to be dependent on their functional lysine-binding sites. However, rhLK8 had no effect on these processes owing to an inability to bind lysine. Collectively, these results indicate that antiangiogenic kringles without lysine binding sites might be safer with respect to physiological fibrinolysis than lysine-binding antiangiogenic kringles. However, the clinical significance of these findings will require further validation in vivo.  相似文献   

14.
The binding of L-Lys, D-Lys and epsilon-aminocaproic acid (epsilon ACA) to the kringle 4 domain of human plasminogen has been investigated via one and two-dimensional 1H-nuclear magnetic resonance spectroscopy at 300 and 600 MHz. Ligand-kringle association constants (Ka) were determined assuming single site binding. At 295 K, pH 7.2, D-Lys binds to kringle 4 much more weakly (Ka = 1.2 mM-1) than does L-Lys (Ka = 24.4 mM-1). L-Lys binding to kringle 4 causes the appearance of ring current-shifted high-field resonances within the -1 approximately less than delta approximately less than 0 parts per million range. The ligand origin of these signals has been confirmed by examining the spectra of kringle 4 titrated with deuterated L-Lys. A systematic analysis of ligand-induced shifts on the aromatic resonances of kringle 4 has been carried out on the basis of 300 MHz two-dimensional chemical shift correlated (COSY) and double quantum correlated spectroscopies. Significant differences in the effect of L-Lys and D-Lys binding to kringle 4 have been observed in the aromatic COSY spectrum. In particular, the His31 H4 and Trp72 H2 singlets and the Phe64 multiplets appear to be the most sensitive to the particular enantiomers, indicating that these residues are in proximity to the ligand C alpha center. In contrast, the rest of the indole spectrum of Trp72 and the aromatic resonances of Trp62 and Tyr74, which are affected by ligand presence, are insensitive to the optical nature of the ligand isomer. These results, together with two-dimensional proton Overhauser studies and ligand-kringle saturation transfer experiments reported previously, enabled us to generate a model of the kringle 4 ligand-binding site from the crystallographic co-ordinates of the prothrombin kringle 1. The latter, although lacking recognizable lysine-binding capability, is otherwise structurally homologous to the plasminogen kringles.  相似文献   

15.
Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).  相似文献   

16.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Substantial evidence indicates that endothelial dysfunction plays a critical role in atherogenesis. We previously demonstrated that apolipoprotein(a) (apo(a); the distinguishing protein component of the atherothrombotic risk factor lipoprotein(a)) elicits rearrangement of the actin cytoskeleton in human umbilical vein endothelial cells, characterized by increased myosin light chain (MLC) phosphorylation via a Rho/Rho kinase-dependent signaling pathway. Apo(a) contains kringle (K)IV and KV domains similar to those in plasminogen: apo(a) contains 10 types of plasminogen KIV-like sequences, followed by sequences homologous to the plasminogen KV and protease domains. Several of the apo(a) kringles contain lysine-binding sites (LBS) that have been proposed to contribute to the pathogenicity of Lp(a). Here we demonstrate that apo(a)-induced endothelial barrier dysfunction is mediated via a Rho/Rho kinase-dependent signaling pathway that results in increased MYPT1 phosphorylation and hence decreased MLC phosphatase activity, thus leading to an increase in MLC phosphorylation, stress fiber formation, cell contraction, and permeability. In addition, studies using recombinant apo(a) variants indicated that these effects of apo(a) are dependent on sequences within the C-terminal half of the apo(a) molecule, specifically, the strong LBS in KIV(10). In parallel experiments, the apo(a)-induced effects were completely abolished by treatment of the cells with the lysine analogue epsilon-aminocaproic acid and the Rho kinase inhibitor Y27632. Taken together, our findings indicate that the strong LBS in apo(a) KIV(10) mediates all of our observed effects of apo(a) on human umbilical vein endothelial cell barrier dysfunction. Studies are ongoing to further dissect the molecular basis of these findings.  相似文献   

18.
In vitro hydrolysis of human lipoprotein[a] (Lp[a]) by phospholipase A2 (PLA2) decreased the phosphatidylcholine (PC) content by 85%, but increased nonesterified fatty acids 3.2-fold and lysoPC 12.9-fold. PLA2-treated Lp[a] had a decreased molecular weight, increased density, and greater electronegativity on agarose gels. In solution, PLA2-Lp[a] was a monomer, and when assessed by sedimentation velocity it behaved like untreated Lp[a], in that it remained compact in NaCl solutions but assumed the extended form in the presence of 6-amino hexanoic acid, which was shown previously to have an affinity for the apo[a] lysine binding site II (LBS II) comprising kringles IV5-8. We interpreted our findings to indicate that PLA2 digestion had no effect on the reactivity of this site. This conclusion was supported by the results obtained from lysine Sepharose and fibrinogen binding experiments, in the presence and absence of Tween 20, showing that phospholipolysis had no effect on the reactivity of the LBS-II domain. A comparable binding behavior was also exhibited by the free apo[a] derived from each of the two forms of Lp[a]. We did observe a small increase in affinity of PLA2-Lp[a] to lysine Sepharose and attributed it to changes in reactivity of the LBS I domain (kringle IV10) induced by phospholipolysis. In conclusion, the extensive modification of Lp[a] caused by PLA2 digestion had no significant influence on the reactivity of LBS II, which is the domain involved in the binding of apo[a] to fibrinogen and apoB-100. These results also suggest that phospholipids do not play an important role in these interactions.  相似文献   

19.
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.  相似文献   

20.
Activation of human Glu-plasminogen, Lys-plasminogen and low-Mr plasminogen (lacking lysine-binding sites) by pro-urokinase (pro-UK), obtained from a human lung adenocarcinoma cell line (Calu-3, ATCC), obeys Michaelis-Menten kinetics. Activation occurs with a comparable affinity (Km 0.40-0.77 microM), while the catalytic rate constant (kcat) is comparable for Glu-plasminogen (0.0022s-1) and low-Mr plasminogen (0.0034 s-1), but is somewhat higher for Lys-plasminogen (0.0106 s-1). The rate of activation of plasminogen by pro-UK is not significantly influenced by the presence of 6-aminohexanoic acid, purified fragments LBS I or LBS II or histidine-rich glycoprotein, indicating that the high affinity of pro-UK for plasminogen is not mediated via the high-affinity lysine-binding site of plasminogen located in kringles 1-3 (LBS I) nor via the low-affinity lysine-binding site comprised within kringle 4 (LBS II). The site(s) in plasminogen involved in the high-affinity interaction with pro-UK thus appear to be located within the low-Mr plasminogen moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号