首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By fluorescence in situ hybridization (FISH) using mouse probes, we assigned homologues for cathepsin E (Ctse), protocadherin 10 (Pcdh10, alias OL-protocadherin, Ol-pc), protocadherin 13 (Pcdh13, alias protocadherin 2c, Pcdh2c), neuroglycan C (Cspg5) and myosin X (Myo10) genes to rat chromosomes (RNO) 13q13, 2q24-->q25, 18p12-->p11, 8q32.1 and 2q22.1-->q22.3, respectively. Similarly, homologues for mouse Ctse, Pcdh13, Cspg5 and Myo10 genes and homologues for rat Smad2 (Madh2) and Smad4 (Madh4) genes were assigned to Chinese hamster chromosomes (CGR) 5q28, 2q17, 4q26, 2p29-->p27, 2q112-->q113 and 2q112-->q113, respectively. The chromosome assignments of homologues of Ctse and Cspg5 reinforced well-known homologous relationships among mouse chromosome (MMU) 1, RNO 13 and CGR 5q, and among MMU 9, RNO 8 and CGR 4q, respectively. The chromosome locations of homologues for Madh2, Madh4 and Pcdh13 genes suggested that inversion events were involved in chromosomal rearrangements in the differentiation of MMU 18 and RNO 18, whereas most of MMU 18 is conserved as a continuous segment in CGR 2q. Furthermore, the mapping result of Myo10 and homologues suggested an orthologous segment of MMU 15, RNO 2 and CGR 2.  相似文献   

2.
A highly sensitive method for the mapping of transgenes and other genes in the mouse genome is described. This technique combines high-resolution G-banding and fluorescence in situ hybridization (FISH) with either biotin/avidin-FITC or digoxigenin-anti-digoxigenin-FITC, the latter being the more sensitive. Banding patterns are obtained with trypsin/Geimsa-treated slides, and sensitivity is greatly increased by the use of mouse Cot-1 DNA. With this protocol, four different 14.5-kb human Cu/Zn-superoxide dismutase transgene insertions ranging in copy number from 2 to 8 have been localized to four different mouse chromosomes. The utility and sensitivity of this procedure were verified with a Chromosome (Chr) 16-specific cosmid probe, H22, as well as with the mapping of a high-copy-number human -amyloid/A4 transgene.  相似文献   

3.
The bacterial artificial chromosome (BAC) has become the most popular tool for cloning large DNA fragments. The inserts of most BAC clones average 100-200 kilobases (kb) and molecular characterization of such large DNA fragments is a major challenge. Here we report a simple and expedient technique for physical mapping of BAC inserts. Individual BAC molecules were immobilized on glass slides coated with Poly-L-lysine. The intact circular BAC molecules were visualized by fluorescence in situ hybridization using BAC DNA as a probe. The 7.4 kb BAC vector was extended to approximately 2.44 kb per micrometer. Digitally measured linear distances can be transformed into kilobases of DNA using the extension of BAC vector as a standard calibration. We mapped DNA fragments as small as 2 kb directly on circular BAC molecules. A rice BAC clone containing both tandem and dispersed repeats was analyzed using this technique. The distribution and organization of the different repeats within the BAC insert were efficiently determined. The results showed that this technique will be especially valuable for characterizing BAC clones that contain complex repetitive DNA sequences.  相似文献   

4.
Physical mapping of DNA clones by nonisotopic in situ hybridization has greatly facilitated the human genome mapping effort. Here we combine a variety of in situ hybridization techniques that make the physical mapping of DNA clones to mouse chromosomes much easier. Hybridization of probes containing the mouse long interspersed repetitive element to metaphase chromosomes produces a Giemsa-like banding pattern which can be used to identify individual Mus musculus, Mus spretus, and Mus castaneus chromosomes. The DNA binding fluorophore, DAPI, gives quinacrine-like bands that can complement the hybridization banding data. Simultaneous hybridization of a differentially labeled clone of interest with the banding probe allows the assignment of a mouse clone to a specific cytogenetic band. These methods were validated by first mapping four known genes, Cpa, Ly-2, Cck, and Igh-6, on banded chromosomes. Twenty-seven additional clones, including twenty anonymous cosmids, were then mapped in a similar fashion. Known marker clones and fractional length measurements can also provide information about chromosome assignment and clone order without the necessity of recognizing banding patterns. Clones hybridizing to each murine chromosome have been identified, thus providing a panel of marker probes to assist in chromosome identification.  相似文献   

5.
We present chromosomal fluorescence in situ hybridization (FISH) results that both extend the HSA20/BTA13 comparative map as well as cytogenetically anchor two microsatellite markers. A bovine bacterial artificial chromosome (BAC) library was screened for conserved genes (type I loci) previously assigned to HSA10 or HSA20 and BTA13, and for microsatellites selected from two published BTA13 linkage maps. Clones from six out of nine comparative loci and both microsatellites were found represented in the BAC library. These BAC clones were used as probes in single colour FISH to determine the chromosome band position of each locus. As predicted by the human/bovine comparative map, all type I loci mapped to BTA13. Because single colour FISH analysis revealed that the loci were clustered within the distal half of BTA13, dual colour FISH was used to confirm the locus order. Established order was centromere- PRNP-(SODIL/AVP/OXT)-(BL42/GNAS1)-HCK-CSSM30 . The findings confirm the presence of a conserved HSA20 homologous synteny group on BTA13 distal of a HSA10 homologous segment.  相似文献   

6.
Nineteen cosmids have been mapped to pig chromosomes by fluorescence in situ hybridization. Two kinds of cosmid clones were isolated as potential physical and genetic markers for the pig genome. Anonymous cosmids were obtained by screening a commercial cosmid library and were localized to Chromosomes (Chrs) 1, 2, 6, 7, 8, 10, 11, 12, 13, and 14. Some of these cosmids were found to reveal RFLP type DNA polymorphism. Microsatellite-containing cosmid clones were isolated by screening a pig cosmid library with a (CA)10 probe and were regionally mapped to Chrs 2, 6, 7, 13, and 14. Ten of the 19 chromosomes in the pig were labeled with these probes. Two-color fluorescence in situ hybridization was used to increase the efficiency of the cosmid localizations.  相似文献   

7.
Meiotic pachytene chromosome-based fluorescence in situ hybridization (FISH) mapping is one of the most important tools in plant molecular cytogenetic research. Here we report a simple technique that allows stretching of pachytene chromosomes of maize to up to at least 20 times their original size. A modified Carnoy's II fixative (6:1:3 ethanol:chloroform:acetic acid) was used in the procedure, and proved to be key for super-stretching of pachytene chromosomes. We demonstrate that super-stretched pachytene chromosomes provide unprecedented resolution for chromosome-based FISH mapping. DNA probes separated by as little as 50 kb can be resolved on super-stretched chromosomes. A combination of FISH with immunofluorescent detection of 5-methyl cytosine on super-stretched pachytene chromosomes provides a powerful tool to reveal DNA methylation of specific chromosomal domains, especially those associated with highly repetitive DNA sequences.  相似文献   

8.
A sensitive in situ hybridization technique which was effective for mapping genes of low copy number on human metaphase chromosomes was used for gene mapping on maize pachytene chromosomes. A cloned genomic EcoR1 fragment of 10.8 kb, containing most or all of the sequence encoding the Waxy locus mRNA, was used as the probe. Southern DNA blotting analyses performed by Shure et al. (1983) indicated that the Waxy locus was a single copy sequence. In our in situ hybridization experiment, the probe hybridized to a specific site on chromosome 9. Labeling at this site was detected in 48.6% of 154 randomly selected copies of chromosome 9. To test the sensitivity of the method, subclones of the fragment with insert sizes of 6.6, 4.7, 3.5, 2.3, 1.9 and 0.8 kb were used for in situ hybridizations. Labeling efficiency for each probe was determined. The data showed that a single copy probe of 1.9 kb could be detected at the correct position in 18% of 183 randomly selected number 9 chromosomes.  相似文献   

9.
10.
Significant progress has been made in the construction of genetic maps in the tetraploid cotton Gossypium hirsutum. However, six linkage groups (LGs) have still not been assigned to specific chromosomes, which is a hindrance for integrated genetic map construction. In the present research, specific bacterial artificial chromosome (BAC) clones constructed in G. hirsutum acc. TM-1 for these six LGs were identified by screening the BAC library using linkage group-specific simple-sequence repeats markers. These BAC clones were hybridized to ten translocation heterozygotes of G. hirsutum. L as BAC-fluorescence in situ hybridization probes, which allowed us to assign these six LGs A01, A02, A03, D02, D03, and D08 to chromosomes 13, 8, 11, 21, 24, and 19, respectively. Therefore, the 13 homeologous chromosome pairs have been established, and we have proposed a new chromosome nomenclature for tetraploid cotton.  相似文献   

11.
Mitotic chromosomes of the plant pathogenic filamentous fungi Botrytis cinerea and Alternaria alternata were observed. Chromosomes prepared by the germ tube burst method were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) to yield figures with good resolution. Using this method, component chromosomes were clearly distinguished and the chromosome number could be determined. Fluorescence in situ hybridization (FISH) was also successfully applied to the specimens, revealing one ribosomal RNA gene cluster, or nucleolus organizer region (NOR) in the genome of each fungus. A long attenuated chromatid thread expanding from a condensed metaphase chromosome, which had been called a thread-like structure in B. cinerea, was proved to be an NOR. This is the first report of the successful application of FISH to the chromosomes of filamentous fungi.  相似文献   

12.
This paper describes a method for the identification of single copy genes in Drosophila melanogaster polytene chromosomes, using fluorescence in situ hybridization (FISH). We demonstrate the detection of white (w) , a gene previously mapped to 1-1.5 region of the linkage map, and to 3C2 region of the cytogenetic map of X chromosome. Squash preparations of polytene chromosomes from salivary glands dissected out from third instar larvae of Drosophila melanogaster were denatured and subjected to hybridization with a digoxigenin labeled probe, corresponding to mini-white gene. The preparations were then washed and incubated with antidigoxigenin-fluorescein antibodies. After removal of the nonspecifically bound antibodies, the polytene chromosomes were counterstained with propidium iodide. Fluorescence microscopy revealed white locus in the X chromosome in a subterminal location, in agreement with the above mentioned maps. The protocol is efficient and adaptable for simultaneously multiple signal detection.  相似文献   

13.
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization. For convenience and to avoid confusion we added for each species a three letter abbreviation prior to the chromosomal band location discussed in this paper: BTA, Cattle chromosome; HSA, Human chromosome; MMV, M. m. vaginalis chromosome; MRE, M. reevesi chromosome.  相似文献   

14.
Our group has developed more than 600 DNA markers to build a map of the canine genome. Of these markers, 125 correspond to genes (anchor loci). Here we report the first six autosomal genes assigned to canine chromosomes by fluorescence in situ hybridization (FISH), using cosmid DNA: adenine phosphoribosyl transferase on Chromosome (Chr) 3; creatine kinase muscle type on Chr 4; pyruvate kinase liver and red blood cell type on Chr 2; and colony-stimulating factor-1 receptor, glucose transporter protein-2, and tumor protein p53 on Chr 5. These assignments are based on the karytotype proposed by Stone and associates (Genome 34, 407, 1991) using high-resolution techniques. In addition, we have assigned the Menkes gene to the X Chr of the dog. Received: 18 August 1995 / Accepted: 17 November 1995  相似文献   

15.
Twenty-seven patients carrying marker chromosomes were previously collected, characterized by cytogenetic techniques, and identified by stepwise fluorescence in situ hybridization (FISH) with alpha-satellite DNA probes. Clinical features of 22 patients are described here and compared to other patients with marker chromosomes similarly identified and reported in the literature.  相似文献   

16.
The enormous potential of in situ hybridization derives from the unique ability of this approach to directly couple cytological and molecular information. In recent years, there has been a surge of success in powerful new applications, resulting from methodologic advances that bring the practical capabilities of this technology closer to its theoretical potential. A major advance has been improvements that enable, with a high degree of reproducibility and efficiency, precise visualization of single sequences within individual metaphase and interphase cells. This has implications for gene mapping, the analysis of nuclear organization, clinical cytogenetics, virology, and studies of gene expression. This article discusses the current state of the art of fluorescence in situ hybridization, with emphasis on applications to human genetics, but including brief discussions on studies of nuclear DNA and RNA organization, and on applications to clinical genetics and virology. Although a review of all of the literature in this field is not possible here, many of the major contributions are summarized along with recent work from our laboratory.  相似文献   

17.
Specific DNA-probes representing the fragments of chromosomal ceruplasmin gene (lambda RCp-1, lambda RCp-2, lambda RCp-3) and its cDNA copy of the corresponding mRNA were heavily labelled with 125J dCTP (the specific activity of the probes varying from 1.5 X 10(7) to 3.4 X 10(8) dpm). These probes were used for in situ hybridization on metaphase chromosomes. The total number of silver grains and their distribution along differentially stained chromosomes were determined in 653 metaphase plates from bone marrow cells of laboratory rats. The results of in situ hybridization were very similar for all four specific DNA-probes tested and allow to assign ceruplasmin gene to the q13 region of chromosome 7. The local increase of silver grain count over chromosome 15 was also registered and discussed.  相似文献   

18.
19.
Mapping of rDNA sites on the chromosomes of four diploid and two tetraploid species of Eleusine has provided valuable information on genome relationship between the species. Presence of 18S-5.8S-26S rDNA on the largest pair of the chromosomes, location of 5S rDNA at four sites on two pairs of chromosomes and presence of 18S-5.8S-26S and 5S rDNA at same location on one pair of chromosomes have clearly differentiated E. multiflora from rest of the species of Eleusine. The two tetraploid species, E. coracana and E. africana have the same number of 18S-5.8S-26S and 5S rDNA sites and located at similar position on the chromosomes. Diploid species, E. indica, E. floccifolia and E. tristachya have the same 18S-5.8S-26S sites and location on the chromosomes which also resembled with the two pairs of 18S-5.8S-26S rDNA locations in tetraploid species, E. coracana and E. africana. The 5S rDNA sites on chromosomes of E. indica and E. floccifolia were also comparable to the 5S rDNA sites of E. africana and E. coracana. The similarity of the rDNA sites and their location on chromosomes in the three diploid and two polyploid species also supports the view that genome donors to tetraploid species may be from these diploid species.  相似文献   

20.
Five cases with small supernumerary ring chromosomes are characterized at the molecular level. Routine chromosome banding analysis was insufficient for identification of the ring chromosomes, and none of them was DA/DAPI positive. Fluorescence in situ hybridization utilizing repetitive centromeric probes for all chromosomes has determined that one of these five ring chromosomes originates in each of chromosomes 4, 7, 8, 9, and 20. Chromosome painting with chromosome-specific libraries has confirmed this and excluded the involvement of additional chromosomes in the rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号