首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4RL) and 6R (6RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4RL and 6RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5DS) on which rye chromosome 4R was fused through the short arm 4RS (designated 5DS-4RS·4RL; 4RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4RS) that was attached to the short arm of wheat chromosome 5D (5DS) (designated 4RS-5DS·5DL; 5DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5DS-4RS·4RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.  相似文献   

2.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

3.
Based on the cross (Triticum aestivum L. × Secale cereale L.) × T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat-rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines 1R(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The “combined” long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising “secondary gene pools” for the purpose of plant breeding.  相似文献   

4.
In rye (Secale cereale L. cv. "Ailés") the progeny of a cross between a structural heterozygote for a reciprocal translocation (involving the 1R chromosome) and a homozygote for the standard chromosome arrangement were analyzed for the electrophoretic patterns of eight different leaf isozymes and also for their meiotic configuration at metaphase I.——The Got-3 and Mdh-2b loci are linked to each other and also to the reciprocal translocation. The Mdh-2b locus is located in the interstitial segment of the 3Rq chromosome arm, with an estimated distance of 8 cM to the breakpoint. Therefore, the reciprocal translocation involves the 1R and 3R chromosomes.——Also, the Mdh-1 and 6-Pgd-2 loci are linked (16 ± 3 cM) and have been located on the 2Rq arm. Finally, the Per-3 and Per-4 loci are located on the 2Rp chromosome arm at an estimated distance of 26 ± 4 cM.  相似文献   

5.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

6.
Transmission of chromosome 5R of rye (Secale cereale L.) and chromosome 5D of common wheat (Triticum aestivum L.) through gametes of 5R5D dimonosomics (2n = 42, 20W″ + 5R′ + 5D′) was studied. Chromosome 5R was found to have lower competitiveness as compared to 5D. Gametes with the rye chromosome were two times less often involved in the formation of a progeny. The combined frequency of the karyotypes of wheat (5D5D) and wheat monosomics (5D) was 11.6-fold higher than the frequency of the karyotypes of substitution lines (5R5R) and monosomics for the rye chromosome (5R). The karyotypes of 10.38% of hybrid plants had aberrant 5R chromosomes with different translocations formed as a result of breakages in the centromere and in the proximal region of the long arm. Telocentrics for the short arm t5RS, i5RS isochromosomes, and chromosomes with a terminal deletion T5RS.5RL-del were identified. The absence of amplification of SSR markers mapped on 5RS and the detection of PCR products for a number of 5RL markers (including the genome-specific rye marker Xrms115) permitted nine plants carrying only the long arm of chromosome 5R to be revealed. Since t5RL telocentrics were not detected by the cytological analysis, the results obtained allow us to suggest the presence of small intercalary translocations of the long arm of chromosome 5R in chromosome 5D or in other wheat chromosomes.  相似文献   

7.
Restoration of male fertility is a prerequisite for hybrid rye breeding and currently the most straightforward approach to minimize ergot infection in hybrid rye varieties. Molecular markers are important tools for the efficient introgression and management of restorer genes like Rfp1 originating from unadapted genetic resources. Furthermore, closely linked markers flanking Rfp1 are indispensible for identifying and selecting individuals with haplotypes showing recombination between Rfp1 and other gene(s) that reside in close proximity and have a negative influence on yield. We identified orthologous gene sets in rice, Brachypodium, and Sorghum and used these gene models as templates to establish conserved ortholog set (COS) markers for the restorer gene Rfp1 on the long arm of rye chromosome 4R. The novel co-dominant markers delimit Rfp1 within a 0.7-cM interval and allow prediction of Rfp1 genotypes with a precision not feasible before. The COS markers enabled an alignment of the improved genetic map of rye chromosome 4R with wheat and barley maps and allowed identification of regions orthologous to Rfp1 in wheat and barley on the short arms of chromosomes 6D and 6H, respectively. Results obtained in this study revealed that micro-collinearity around the Rfp1 locus in rye is affected by rearrangements relative to other grass genomes. The impact of the novel COS markers for practical hybrid rye breeding is discussed.  相似文献   

8.
A genetic map of six chromosomes of rye, (all of the rye chromosomes except for 2R), was constructed using 77 RFLP and 12 RAPD markers. The map was developed using an F2 population of 54 plants from a cross between two inbred lines. A rye genomic library was constructed as a source of clones for RFLP mapping. Comparisons were made between the rye map and other rye and wheat maps by including additional probes previously mapped in those species. These comparisons allowed (1) chromosome arm orientation to the linkage groups to be given, (2) the corroboration of several evolutionary translocations between rye chromosomes and homoeologous chromosomes of wheat; (3) an increase in the number of available markers for target regions of rye that show colinearity with wheat. Inconsistencies in the location of markers between the wheat and rye maps were mostly detected by multi-copy probes.  相似文献   

9.
Chinese rye cultivar Jingzhouheimai (Secale cereale L.) shows a high level of resistance to powdery mildew. Identification, location, and mapping of the resistance gene would be helpful for developing a highly resistant germplasm or cultivar in wheat. Using sequential C-banding, GISH, and marker analysis, an addition chromosome with powdery mildew resistance was identified in a line derived from a cross between Chinese wheat landrace Huixianhong and rye cultivar Jingzhouheimai. The line, designated H-J DA2RDS1R(1D), had 44 chromosomes including two pairs of rye chromosomes, 1R and 2R, and lacked a pair of wheat chromosomes 1D, that is, it is a double disomic addition disomic substitution line. According to its reaction to different isolates of the powdery mildew pathogen, the resistance gene in H-J DA2RDS1R(1D) differed from the Pm8 and Pm7 genes located earlier on rye chromosomes 1R and 2R, respectively. In order to determine the location of the resistance gene, line H-J DA2RDS1R(1D) was crossed with wheat landrace Huixianhong and the F2 population and corresponding F2:3 families were tested for disease reaction and assessed with molecular markers. The results showed that a resistance gene, designated PmJZHM2RL, is located in rye chromosome arm 2RL.  相似文献   

10.
Soluble aluminum (Al3+) is a major constraint to plant growth in highly acidic soils, which comprise up to 50% of the world??s arable land. The primary mechanism of Al resistance described in plants is the chelation of Al3+ cations by release of organic acids into the rhizosphere. Candidate aluminum tolerance genes encoding organic acid transporter of the ALMT (aluminum-activated malate transporter) and MATE (multi-drug and toxic compound extrusion) families have been characterized in several plant species. In this study, we have isolated in five different cultivars the rye ScAACT1 gene, homolog to barley aluminum activated citrate transporter HvAACT1. This gene mapped to the 7RS chromosome arm, 25?cM away from the ScALMT1 aluminum tolerance gene. The gene consisted of 13 exons and 12 introns and encodes a predicted membrane protein that contains the MatE domain and at least seven putative transmembrane regions. Expression of the ScAACT1 gene is Al-induced, but there were differences in the levels of expression among the cultivars analyzed. A new quantitative trait locus for Al tolerance in rye that co-localizes with the ScAACT1 gene was detected in the 7RS chromosome arm. These results suggest that the ScAACT1 gene is a candidate gene for increased Al tolerance in rye. The phylogenetic relationships between different MATE proteins are discussed.  相似文献   

11.
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.  相似文献   

12.
Summary Aneuploid stocks, which included Triticum aestivum/alien, disomic, chromosome addition lines, wheat/alien, ditelosomic, chromosome addition lines, and the available aneuploids of Chinese Spring wheat, were used to locate genes that influence milling energy requirement (ME). Genes that affected ME were found on all seven homoeologous chromosome groups. The addition of complete wheat chromosomes 1B, 1D, 2A, 2D, 5B, 6B, 7B and 7D increased ME. Positive effects were also found in specific chromosome arms: 1BS, 2DS, 5AS, 5BS and 6BL. Wheat chromosome 3B conditioned low ME and the gene(s) responsible was located on the short arm. Other negative effects were attributed to wheat chromosome arms 4BL, 4DL, 5DS and 6DS. Alien chromosome additions that conferred high ME included 2H, 5H, 6H and 7H of barley, Hordeum vulgare and 2R, 2R, 4R, 4RL, 6R, 6RL and 7RL of rye, Secale cereale. Those that conferred a low ME included 1H ch of H. chilense, and 6u and 7u of Aegilops umbellulata, 5R and 5RS of S. cereale and 5R m and 5R mS of S. montanum. Although the control of ME is polygenic, there is a major effect of genes located on the short arms of homoeologous group 5 chromosomes.  相似文献   

13.
Gametocidal (Gc) genes of Aegilops in the background of the wheat genome lead to breakage of wheat chromosomes. The Q gene of wheat was used as a marker to select 19 deletion lines for the long arm of chromosome 5A of common wheat, Triticum aestivum cv. Chinese Spring (CS). The extents of deleted segments were cytologically estimated by the C-banding technique. The DNAs of deletion lines were hybridized with 22 DNA probes recognizing sites on the long arm of the chromosome (5AL) to determine their physical order. Based on the breeding behavior of the deletion lines, the location of a novel gene (Pv, pollen viability) affecting the viability of the male gamete was deduced. The segment translocated from 4AL to 5AL in CS was cytologically estimated to represent 13% of the total length of 5AL. Although DNA markers were almost randomly distributed along the chromosome arm, DNA markers located around the centromere and C-banded regions were obtained only rarely. Some deletion lines were highly rearranged in chromosome structure due to the effect(s) of the Gc gene. Applications of Gc genes for manipulating wheat chromosomes are discussed.  相似文献   

14.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

15.
Cytogenetic analysis of meiosis in the wheat-rye dimonosomics 1Rv-1A, 1Ron-1A, 2R-2D, 5R-5A, and 6R-6A was conducted. C-banding was used to study the segregation pattern of each of two univalent chromosomes during the first meiotic division. It has been shown that the division frequency of the centromeric regions of all rye chromosomes in the pair studied is significantly higher than in the wheat chromosomes. The ANOVA performed suggest that the plant genotype contributes significantly (at P = 0.05) to the behavior pattern of univalent chromosomes in meiosis. The data obtained demonstrate that the rye and wheat chromosomes studied are involved in genetic regulation of centromere division in meiotic anaphase I (AI). The presence of rye chromosome 2R and wheat chromosome 2D suppresses the division of centromeres of the sister chromatids in AI. Rye chromosomes 1Rv, 1Ron, 5R, and 6R induce equational division; however, rye chromosome 1Rv increases to a greater degree the frequency of equational division of wheat chromosome 1A as compared with chromosome 1Ron.  相似文献   

16.
A dispersed, rye-specific element has been used to isolate clones of rye origin from wheat plants containing only a single rye chromosome arm or segment. In this way a set of 23 YAC clones has been isolated from the short arm of rye chromosome 1 (1RS). This technique was extended to isolate clones from a small region of 1RS that contains a large number of agronomically important genes. The targeted cloning method allowed the isolation of 26 classes of lambda clones representing about 5% of the region. Ten of the lambda clones could be mapped to segments within this region. A third example of the application of this technique involved the isolation of clones from a very small but fully functional rye chromosome, the midget chromosome. These clones have allowed the confirmation of the origin of the midget from 1RL, and may provide a tool for the isolation of structural elements of cereal chromosomes. This technique allows the identification of clone libraries for any rye chromosome or chromosome arm, since substitution, addition and translocation lines are available for all rye chromosomes. Furthermore, the technique allows isolation of clones derived from segments of the rye genome recombined into wheat. The method is technically simple and both lambda and YAC libraries can be constructed. Synteny between the genomes of the cereals allows region-specific libraries from rye to be used to target regions of the wheat and barley genomes.  相似文献   

17.
Newly synthesized wheat–rye allopolyploids were investigated by genomic in situ hybridization, over the first, second, third and fourth allopolyploid generations. Inter and intra chromosome connections were observed in 12 root-tip cells of CA4.4.7 (S2 generation), and translocations between wheat and rye chromosomes were also detected in five root-tip cells. In root-tip cells of CA4.4.7.5 and CA4.4.7.2.2 (S3 and S4 generation), the chromosome connections occurred again, a dissociative small rye segment was detected in seven cells of CA4.4.7.5. In plants MSV6.1 and MSV6.5 (S1 generation), almost half of the root-tip cells contained 13 rye chromosomes and the rest held 12 rye chromosomes, and all the cells of the two plants contained 42 wheat chromosomes. Five pairing configurations of rye chromosomes, including 5 II + 3 I, 6 II + 1 I, 6 II, 5 II + 2 I and 4 II + 4 I, were observed in pollen mother cells of the two plants. The two plants’ progeny, including S2, S3, and S4 generation plants, contained 42 wheat chromosomes and 12 rye chromosomes. Therefore, the inter chromosome translocation and unequal chromosome division could occur in somatic cells of wide hybrids. The unequal chromosome division in somatic cell could induce chromosome elimination at the early stages of allopolyploidization.  相似文献   

18.

Background

Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported.

Methodology/Principal Findings

Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line.

Conclusions/Significance

These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.  相似文献   

19.

Background

The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide.

Methodology/Principal Findings

Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice.

Conclusions

The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye.  相似文献   

20.
Seven different mildew resistant wheat lines derived from crosses between triticale and bread wheat were examined by molecular cytogenetics and chromosome C-banding in order to determine their chromosomal composition. Genomic in situ hybridisation (GISH) showed the presence of rye germplasm in all the lines and identified three substitution lines, three double substitution lines and one addition-substitution line. C-banding identified rye chromosomes 1R and 4R in the addition-substitution line, rye chromosomes 1R and 6R in two substitution lines and 1R and 2R in the third line, and rye chromosome 1R in the three substitution lines. Two of the latter lines (7-102 and 7-169) contained a modified form of the chromosome; fluorescent in situ hybridisation (FISH) using five different repetitive DNA-probes showed a pericentric inversion of 1R in both lines. The breakpoints of the 1R inversion were between (1) the 5S rDNA site and the NOR-region on the satellite of the short arm, and (2) between two AAC(5) sites close to the centromere on the long arm. The role of the rye chromosomes in the mildew resistance, the utilisation of the inverted 1R and the significance of the lines in wheat breeding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号