首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the hypothesis that neutrophil sequestration is required for the development of tumor necrosis factor- (TNF) induced neutrophil- (PMN) dependent pulmonary edema. TNF (3.2 X 10(5) U/kg ip) was injected into guinea pigs 18 h before lung isolation. After isolation, the lung was perfused with a phosphate-buffered Ringer solution. Dextran sulfate (mol wt 500,000) prevented the changes in pulmonary capillary pressure (Ppc; 8.5 +/- 0.8 vs. 12.8 +/- 0.8 cmH2O), lung weight gain (dW; +0.240 +/- 0.135 vs. +1.951 +/- 0.311 g), and pulmonary edema formation or wet-to-dry wt ratio [(W - D)/D; 6.6 +/- 0.2 vs. 8.3 +/- 0.5] at 60 min induced by PMN infusion into a TNF-pretreated lung. The unsulfated form of dextran had no protective effect [Ppc, dW, and (W - D)/D at 60 min: 11.9 +/- 0.9 cmH2O, +1.650 +/- 0.255 g, and 7.3 +/- 0.2, respectively], whereas the use of another anionic compound, heparin, inhibited the TNF + PMN response [Ppc, dW, and (W - D)/D at 60 min: 5.6 +/- 0.4 cmH2O, +0.168 +/- 0.0.052 g, and 6.4 +/- 0.2, respectively]. Isolated lungs showed increased PMN myeloperoxidase (MPO) activity compared with control in TNF-treated lungs at baseline and 60 min after PMN infusion. Dextran sulfate, dextran, and heparin inhibited the increase in MPO activity. The data indicate that inhibition of PMN sequestration alone is not sufficient for the inhibition of PMN-mediated TNF-induced hydrostatic pulmonary edema and that a charge-dependent mechanism mediates the protective effect of dextran sulfate.  相似文献   

2.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Importance of vasoconstriction in lipid mediator-induced pulmonary edema   总被引:2,自引:0,他引:2  
Lipid mediators of inflammation cause pulmonary edema, yet it is unclear to what degree hemodynamic alterations or increased vascular permeability contribute to lung edema formation. The isolated rat lung preparation was used to examine the effect of leukotriene C4 (LTC4) and platelet-activating factor (PAF) on pulmonary arterial pressure (Ppa), lung microvascular pressure (Pmv), lung wet-to-dry weight ratio, and the 125I-albumin escape index. We first defined the response of the isolated rat lung perfused with protein-free salt solution to hydrodynamic stress by raising the lung outflow pressure. Sustained elevation of the lung outflow pressure less than 5.5 cmH2O (4.01 mmHg) caused a negligible increase in Ppa and wet-to-dry lung weight ratio. Elevation of outflow pressures greater than 7.5 cmH2O (5.4 mmHg) increased the vascular albumin escape index more than the lung wet-to-dry weight ratio. Dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP) inhibited the increase in albumin escape index because of increased lung outflow pressure, suggesting perhaps a pressure-independent microvascular membrane effect of db-cAMP. Both LTC4 (2-micrograms bolus) and PAF (2-2,000 ng/ml perfusate) increased the albumin escape index in association with increases in Ppa and Pmv. Because the increased albumin escape index after LTC4 or PAF injection was largely accounted for by the increased vascular pressures and because db-cAMP and papaverine inhibited the rise in vascular pressures and in the albumin escape index, we conclude that vasoconstriction is an important contributor to LTC4- and PAF-induced edema formation in rat lungs.  相似文献   

4.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

5.
Exposing rabbits for 1 h to 100% O2 at 4 atm barometric pressure markedly increases the concentration of thromboxane B2 in alveolar lavage fluid [1,809 +/- 92 vs. 99 +/- 24 (SE) pg/ml, P less than 0.001], pulmonary arterial pressure (110 +/- 17 vs. 10 +/- 1 mmHg, P less than 0.001), lung weight gain (14.6 +/- 3.7 vs. 0.6 +/- 0.4 g/20 min, P less than 0.01), and transfer rates for aerosolized 99mTc-labeled diethylenetriamine pentaacetate (500 mol wt; 40 +/- 14 vs. 3 +/- 1 x 10(-3)/min, P less than 0.01) and fluorescein isothiocyanate-labeled dextran (7,000 mol wt; 10 +/- 3 vs. 1 +/- 1 x 10(-4)/min, P less than 0.01). Pretreatment with the antioxidant butylated hydroxyanisole (BHA) entirely prevents the pulmonary hypertension and lung injury. In addition, BHA blocks the increase in alveolar thromboxane B2 caused by hyperbaric O2 (10 and 45 pg/ml lavage fluid, n = 2). Combined therapy with polyethylene glycol- (PEG) conjugated superoxide dismutase (SOD) and PEG-catalase also completely eliminates the pulmonary hypertension, pulmonary edema, and increase in transfer rate for the aerosolized compounds. In contrast, combined treatment with unconjugated SOD and catalase does not reduce the pulmonary damage. Because of the striking increase in pulmonary arterial pressure to greater than 100 mmHg, we tested the hypothesis that thromboxane causes the hypertension and thus contributes to the lung injury. Indomethacin and UK 37,248-01 (4-[2-(1H-imidazol-1-yl)-ethoxy]benzoic acid hydrochloride, an inhibitor of thromboxane synthase, completely eliminate the pulmonary hypertension and edema.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We investigated the effect of IL-2 in the isolated guinea pig lung perfused with phosphate-buffered Ringer's solution (containing 0.5 g/100 ml albumin and 5.5 mM dextrose) to determine the mechanism of IL-2-induced pulmonary edema. IL-2 (0 to 10,000 U/ml) was added to the perfusate following a 10 min baseline steady-state period. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight (as a measure of developing pulmonary edema) were recorded at 0, 10, 30, 40, and 60 min. The capillary filtration coefficient (Kf.c), an index of vascular permeability to water, was measured at 30 and 60 min. Infusion of IL-2 increased Ppc (from 3.9 +/- 0.1 cm H2O at baseline to 8.8 +/- 1.1 cm H2O at 60 min for IL-2 at 2000 U/ml, p less than 0.01; and from 3.8 +/- 0.1 cm H2O at baseline to 8.9 +/- 0.6 cm H2O at 60 min for IL-2 at 10,000 U/ml, p less than 0.01. The lung weight also increased (32% at IL-2 concentration of 2000 U/ml, and 26% at IL-2 concentration of 10,000 U/ml) The capillary filtration coefficient did not change with IL-2 infusion. The IL-2 response was prevented using the pulmonary vasodilator, papaverine. The infusion of IL-2 was associated with the generation of thromboxane A2(TxA2) in the effluent perfusate. Inhibition of TxA2 synthetase using Dazoxiben prevented the pulmonary vasoconstriction and edema response to IL-2. In addition, IL-2 had no effect on the transendothelial clearance of 125I-albumin. The results indicate that IL-2 causes pulmonary edema secondary to an increase in Ppc. The response is mediated by IL-2 stimulation of TxA2 generation from the lung.  相似文献   

7.
Platelet-activating factor (PAF) induces pulmonary edema and has a key role in acute lung injury (ALI). Here we show that PAF induces pulmonary edema through two mechanisms: acid sphingomyelinase (ASM)-dependent production of ceramide, and activation of the cyclooxygenase pathway. Agents that interfere with PAF-induced ceramide synthesis, such as steroids or the xanthogenate D609, attenuate pulmonary edema formation induced by PAF, endotoxin or acid instillation. Our results identify acid sphingomyelinase and ceramide as possible therapeutic targets in acute lung injury.  相似文献   

8.
The aim of this study was to determine whether leukotriene C4 (LTC4) is a mediator of hypoxic pulmonary vasoconstriction. We hypothesized that similar increases in LTC4, detected in the lung parenchyma and pulmonary vascular compartment during cyclooxygenase blockade with indomethacin (INDO), would be observed during an equal increase in pulmonary arterial pressure caused by acute alveolar hypoxia (HYP, 100% N2) or platelet-activating factor (PAF, 10 micrograms into the pulmonary artery). Rat lungs were perfused at constant flow in vitro with an albumin-Krebs-Henseleit solution. Mean pulmonary arterial pressure (n = 6 per group) increased from a base line of 10.9 +/- 1.2 to 15.8 +/- 2.1 (HYP + INDO) and 15.5 +/- 1.9 (SE) Torr (PAF + INDO). LTC4 levels increased only in response to PAF + INDO; perfusate levels increased from 0.4 +/- 0.07 to 5.3 +/- 1.1 ng/40 ml, and lung parenchymal levels increased from 1.9 +/- 0.07 to 22.8 +/- 5.3 ng/lung. Diethylcarbamazine (lipoxygenase inhibitor) reduced PAF-induced lung parenchymal levels of LTC4 by 68% and pulmonary hypertension by 63%. We conclude that 1) LTC4 is not a mediator of hypoxic pulmonary vasoconstriction and 2) intravascular PAF is a potent stimulus for LTC4 production in the lung parenchyma.  相似文献   

9.
We investigated the effects of two different platelet-activating factor (PAF) antagonists, SRI 63-441 and WEB 2086, on PAF-, angiotensin II-, and hypoxia-induced vasoconstrictions in isolated rat lungs perfused with a physiological salt solution. Bolus injection of PAF (0.5 micrograms) increased pulmonary arterial and microvascular pressures and caused lung edema. Both SRI 63-441, a PAF-analogue antagonist, and WEB 2086, a thienotriazolodiazepine structurally unrelated to PAF, completely blocked PAF-induced vasoconstriction and lung edema at 10(-5) M. At a lower concentration (10(-6) M), WEB 2086 was more effective than SRI 63-441. WEB 2086 also blocked the pulmonary vasodilation induced by low-dose PAF (15 ng) in blood-perfused lungs preconstricted with hypoxia. SRI 63-441 and CV 3988 (another PAF analogue antagonist), but not WEB 2086, caused acute pulmonary vasoconstriction at 10(-5) M and severe lung edema at a higher concentration (10(-4) M). PAF-induced but not SRI- or CV-induced pulmonary vasoconstriction and edema were inhibited by WEB 2086. In addition, SRI 63-441 potentiated angiotensin II- and hypoxia-induced vasoconstrictions. This effect of SRI 63-441 is not due to PAF receptor blockade because 1) addition of PAF (1.6 nM) to the perfusate likewise potentiated angiotensin II-induced vasoconstriction and 2) WEB 2086 did not cause a similar response. We conclude that both SRI 63-441 and WEB 2086 are effective inhibitors of PAF actions in the rat pulmonary circulation. However, antagonists with structures analogous to PAF (SRI 63-441 and CV 3988) can have significant pulmonary vasoactive side effects.  相似文献   

10.
We studied the synergistic interaction between platelet-activating factor (PAF) and protamine sulfate, a cationic protein that causes pulmonary endothelial injury, in isolated rat lungs perfused with a physiological salt solution. A low dose of protamine (50 micrograms/ml) increased pulmonary artery perfusion pressure (Ppa) but did not increase wet lung-to-body weight ratio after 20 min. Pretreatment of the lungs with a noninjurious dose of PAF (1.6 nM) 10 min before protamine markedly potentiated protamine-induced pulmonary vasoconstriction and resulted in severe lung edema and increased lung tissue content of 6-keto-prostaglandin F1 alpha, thromboxane B2, and leukotriene C4. Pulmonary microvascular pressure (Pmv), measured by double occlusion, was markedly increased in lungs given PAF and protamine. These potentiating effects of PAF were blocked by WEB 2086 (10(-5) M), a specific PAF receptor antagonist. Pretreatment of the lungs with a high dose of histamine (10(-4) M) failed to enhance the effect of protamine on Ppa, Pmv, or wet lung-to-body weight ratio. Furthermore, PAF pretreatment enhanced elastase-, but not H2O2-, induced lung edema. To assess the role of hydrostatic pressure in edema formation, we compared lung permeability-surface area products (PS) in papaverine-treated lungs given either protamine alone or PAF + protamine and tested the effect of mechanical elevation of Pmv on protamine-induced lung edema. In the absence of vasoconstriction, PAF did not potentiate protamine-induced increase in lung PS. On the other hand, mechanically raising Pmv in protamine-treated lungs to a level similar to that measured in lungs given PAF + protamine did not result in a comparable degree of lung edema. We conclude that PAF potentiates protamine-induced lung edema predominantly by enhanced pulmonary venoconstriction. However, a pressure-independent effect of PAF on lung vasculature cannot be entirely excluded.  相似文献   

11.
Lung fluid balance was studied in sheep under the following conditions: 1) unanesthetized, standing in a metabolic cage; 2) anesthetized, in a supine position; 3) 1 h after extracorporeal perfusion; and 4) either 4-6 h after extracorporeal perfusion (i.e., control experiments) or 1.5 h after left atrial pressure was increased by 15 cmH2O. Lung lymph flow rate (QL), plasma and lymph concentrations for nine protein fractions, urea permeability-surface area product (PS), urea effective diffusivity (D1/2S), and extravascular lung water (VE) were measured under each condition. Bloodless wet and dry lung weights were measured at the end of each experiment. QL increased and lymph-to-plasma concentration ratio for total proteins (L/P) decreased after the sheep were anesthetized and placed in a supine position. This possibly resulted from an increase in microvascular pressure induced by anesthesia and/or reorientation of the lungs. PS, D1/2S, and VE decreased, indicating a decrease in perfused surface area associated with a decreased cardiac output or alteration in lung orientation. After 90 min of extracorporeal perfusion, no significant differences were found in QL, PS, and D1/2S compared with those measured during the anesthetized period. No changes in PS or D1/2S could be detected after an average of 4.2 h of extracorporeal perfusion. The average bloodless wet-to-dry lung weight ratio [(W-D)/D] was 3.77 +/- 0.12, well within the range for normal sheep lungs. An increase in venous pressure of 15 cmH2O produced a response similar to that observed in the unanesthetized sheep lung lymph preparation: QL increased, L/P decreased, PS and D1/2S did not increase, and VE and (W-D)/D increased slightly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of structurally different PAF receptor blockers were investigated in platelets, neutrophils, guinea pig ileum, rat isolated lung and rat isolated pulmonary artery. PAF caused serotonin release from platelets and a characteristic shape change and adhesion of neutrophils. The antagonists (CV 3988, alprazolam, 48740 RP and Merck-Sharp and Dohme L-652, 731) inhibited platelet serotonin release but not neutrophil shape change adhesion or lysosomal enzyme release. The antagonists in high concentrations (10(-5)-10(-4)M) inhibited nonspecifically the PAF-induced (10(-8)M) guinea pig ileum contraction, but were ineffective at concentrations which inhibited platelet responses. In the rat lung the compounds, in high concentrations, partially inhibited the low dose PAF-induced pulmonary vasodilation and the high dose PAF induced pulmonary vasoconstriction and edema. Our data indicate that some platelet PAF antagonists may be ineffective in blocking the action of PAF on neutrophils and smooth muscle preparations and suggest either PAF-receptor independent actions of PAF or different classes of PAF receptors.  相似文献   

13.
We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.  相似文献   

14.
We have determined the combined effects of lung expansion and increased extravascular lung water (EVLW) on the perialveolar interstitial pressure gradient. In the isolated perfused lobe of dog lung, we measured interstitial pressures by micropuncture at alveolar junctions (Pjct) and in adventitia of 30- to 50-microns microvessels (Padv) with stopped blood flow at vascular pressure of 3-5 cmH2O. We induced edema by raising vascular pressures. In nonedematous lobes (n = 6, EVLW = 3.1 +/- 0.3 g/g dry wt) at alveolar pressure of 7 cmH2O, Pjct averaged 0.5 +/- 0.8 (SD) cmH2O and the Pjct-Padv gradient averaged 0.9 +/- 0.5 cmH2O. After increase of alveolar pressure to 23 cmH2O the gradient was abolished in nonedematous lobes, did not change in moderately edematous lobes (n = 9, EVLW = 4.9 +/- 0.6 g/g dry wt), and increased in severely edematous lobes (n = 6, EVLW = 7.6 +/- 1.4 g/g dry wt). Perialveolar interstitial compliance decreased with increase of alveolar pressure. We conclude that increase of lung volume may reduce perialveolar interstitial liquid clearance by abolishing the Pjct-Padv gradient in nonedematous lungs and by compressing interstitial liquid channels in edematous lungs.  相似文献   

15.
Dextran sulfate, heparin, and certain other sulfated polysaccharides potently inhibit the adsorption of HIV to CD4+ cells. The mechanism of this inhibition is unclear and, specifically, it is unknown if these agents act at the level of CD4-gp120 binding. For example, previous reports have demonstrated that dextran sulfate does not inhibit the cell surface binding of anti-CD4 mAb known to be directed at the gp120 binding site. In order to confirm and extend these observations, in the present study, it was shown that dextran sulfate does not inhibit the binding of OKT4A, OKT4C, Leu3a, or B66.6 to CD4+ cells as measured by cytofluorography. Next, recombinant forms of CD4 (rT4) and gp120 (rgp120) were utilized to directly study their molecular interaction in the absence of other viral or cellular structures. Reciprocal solid phase ELISA assays were developed to study directly the effects of sulfated polysaccharides on the binding of rT4 to immobilized rgp120 and vice versa. Dextran sulfate, heparin, and fucoidan, but not chondroitin sulfate, inhibited the binding of rgp120 to rT4. Importantly, dextran sulfate and heparin pre-treatment of immobilized rT4, but not immobilized rgp120, inhibited rT4-rgp120 binding. Taken together, these data suggest that while both sulfated polysaccharides and anti-CD4 mAb inhibit gp120 binding, the sulfated polysaccharides interact with sites on CD4 that are distinct from those with which the antibodies bind.  相似文献   

16.
It has been proposed that the upper airway compliance should be highest during rapid eye movement (REM) sleep. Evidence suggests that the increased compliance is secondary to an increased retroglossal compliance. To test this hypothesis, we examined the effect of sleep stage on the relationship of retroglossal cross-sectional area (CSA; visualized with a fiber-optic scope) to pharyngeal pressure measured at the level of the oropharynx during eupneic breathing in subjects without significant sleep-disordered breathing. Breaths during REM sleep were divided into phasic (associated with eye movement, PREM) and tonic (not associated with eye movements, TREM). Retroglossal CSA decreased with non-REM (NREM) sleep and decreased further in PREM [wake 156.8 +/- 48.6 mm(2), NREM 104.6 +/- 65.0 mm(2) (P < 0.05 wake vs. NREM), TREM 83.1 +/- 46.4 mm(2) (P = not significant NREM vs. TREM), PREM 73.9 + 39.2 mm(2) (P < 0.05 TREM vs. PREM)]. Retroglossal compliance, defined as the slope of the regression CSA vs. pharyngeal pressure, was the same between all four conditions (wake -0.7 + 2.1 mm(2)/cmH(2)O, NREM 0.6 +/- 3.0 mm(2)/cmH(2)O, TREM -0.2 +/- 3.3 mm(2)/cmH(2)O, PREM -0.6 +/- 5.1 mm(2)/cmH(2)O, P = not significant). We conclude that the intrinsic properties of the airway wall determine retroglossal compliance independent of changes in the neuromuscular activity associated with changes in sleep state.  相似文献   

17.
The pulmonary capillaries of neonatal lungs are potentially vulnerable to stress failure because of the complex changes in the pulmonary circulation that occur at birth. We perfusion fixed the lungs from nine anesthetized newborn rabbits at capillary transmural pressures (P(tm)) of 5 +/- 5, 10 +/- 5, and 15 +/- 5 cmH(2)O. Normal microscopic appearances were seen at P(tm) values of 5 +/- 5 and 10 +/- 5 cmH(2)O, but massive airway edema was observed in lungs perfused at a P(tm) of 15 +/- 5 cmH(2)O. Consistent with this, no disruptions of the alveolar epithelium were observed at P(tm) values of 5 +/- 5 cmH(2)O, but mean values of 0.11 and 1.22 breaks/mm epithelium were found at P(tm) of 10 +/- 5 and 15 +/- 5 cmH(2)O, respectively (P < 0.05 for 5 +/- 5 vs. 15 +/- 5 cmH(2)O). These pressures are in striking contrast to those in the adult rabbit in which, by a similar procedure, a P(tm) of 52.5 cmH(2)O, is required before stress failure is consistently seen. We conclude that stress failure of pulmonary capillaries in newborn rabbit lungs can occur at P(tm) values of less than one-third of those that are required in adult lungs.  相似文献   

18.
Intratracheal instillation of platelet-activating factor (PAF) in sheep produces bronchoconstriction and airway hyperresponsiveness (AHR) by a two-stage process that involves the initial stimulation of PAF receptors followed by the secondary generation of proinflammatory mediators. Because the biological effects of PAF may be mediated by these proinflammatory metabolites, it is possible that a steroidal anti-inflammatory agent would modify the airway responses of PAF. We measured specific lung resistance (sRL) in sheep (n = 11) before, immediately after, and serially for up to 2 h after intratracheal instillation of PAF (30 micrograms/kg). Airway responsiveness was measured 2 h post-PAF when sRL had returned to baseline and was expressed as the cumulative provocating dose of carbachol that increased sRL to 4 l.cmH2O.l-1.s (PD4). PD4 was determined on a control day and on different experiment days without or after treatment with intravenous methylprednisolone (MPS; 1 mg/kg) administered 3 h before (n = 6), 20 min before PAF (n = 7), or 20 min after PAF challenge (n = 7). PAF increased sRL by 222 +/- 44% (SE) above baseline and decreased PD4 of carbachol by 44 +/- 5% (P less than 0.05). Pretreatment (both 3 h and 20 min) with MPS attenuated the PAF-induced increases in sRL, whereas its administration 20 min post-PAF had no effect. Irrespective of the effects on sRL, MPS administration inhibited the PAF-induced AHR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The aim of our study was to investigate the physiologic mechanisms involved in eosinophil activation as an essential prerequisite to disrupting the biochemical cascade that triggers inflammation, thereby attenuating the effect of this activation or, ideally, preventing it from occurring. We have, therefore, examined the nature of the fMLP- and PAF-induced [Ca2+]i rise and the relationship between the [Ca2+]i rise and O2- production in human umbilical cord blood-derived eosinophils cultured in the presence of IL-3 and IL-5. These cells responded to fMLP or PAF (1 microM each) with an increase in [Ca2+]i (217.3 +/- 22.1 and 197.8 +/- 22.1 nM respectively) which was associated with production of O2- (40.2 +/- 8.2 and 35.2 +/- 7.6 pmol/min/10(6) cells respectively). The role of Ca2+ in the induced respiratory burst was studied by changing the availability of Ca2+ in the intra- and extracellular compartments. Removal or chelation of extracellular Ca2+ induced a reduction of both the fMLP and PAF-induced [Ca2+]i rise and O2- production. Chelation of intracellular Ca2+ induced a concentration-dependent inhibition of fMLP- and PAF-induced [Ca2+]i rise and caused a decrease in O2- production. SK&F 96365 had a stimulatory effect on PAF-induced [Ca2+]i rise and on fMLP-induced O2- production, this phenomenon was not observed with extracellular Ca2+ removal or chelation. Furthermore, Ni2+ exhibited an inhibition of both fMLP and PAF-induced [Ca2+]i rise and O2- production. Finally, both fMLP and PAF induced an increase in divalent cation influx that was further augmented by thapsigargin. Our results indicate that fMLP and PAF dependent O2- production in human eosinophils require intra- and extracellular Ca2+ and that Ca2+ influx is necessary for optimal activation.  相似文献   

20.
In our previous paper, we reported that various types of carrageenan, dextran sulfate and fucoidan, which are sulfated homopolysaccharides with high molecular weights, were human T cell mitogens and murine polyclonal B cell activators (PBAs) and that heparin, a sulfated heteropolysaccharide, was a very weak human mitogen and mouse PBA. Here we used cellulose sulfate (Mr 7-9 X 10(3], dextran sulfate with two different low molecular weights (Mr 5 X 10(3) and 8 X 10(3], two different condroitin sulfates (Mr 3.5 X 10(4], polyvinyl sulfate and polygalacturonic acid to investigate mitogenic activities of polysaccharides in detail. The following results were obtained. Low-molecular-weight sulfated homopolysaccharides, dextran sulfate and cellulose sulfate, were very weak or not human T cell mitogens. However, they were better murine PBAs. Sulfated heteropolysaccharides, chondroitin 4-sulfate and chondroitin 6-sulfate, hardly induced mitogenic changes in human T cells and mouse B cells, even though the molecular weight of these substances was more than 1 X 10(4). There were no other polymers examined so far which activated both human T cells and murine B cells. The relationship among molecular size, sulfate groups and lymphocyte activation is discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号