首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed an EBV-derived shuttle vector, pF1-EBV, which replicates in human cells as an extrachromosomal element. The structural sequences of the gene encoding the bacterial xanthine-guanine-phosphoribosyltransferase (gpt) were fused to the promoter and presumptive control region of the mouse metallothionein I (MT-I) gene. Human 293 cells transformed with the recombinant plasmid synthesized gpt mRNA and the expression of the gene was inducible by zinc. The gpt gene offers a convenient system of selection for mutant plasmids by transformation into the appropriate gpt- E. coli strain. A clonal cell line created by establishment of the pF1-EBV shuttle vector showed a spontaneous gpt- frequency of 2.10(-5). An increase in mutation frequency above background was induced by mutagenizing this cell line with the alkylating agent N-methyl-N-nitrosourea (MNU). The recombinant molecule that we have constructed should provide a tool for studying the role of gene expression in DNA repair and mutagenesis.  相似文献   

2.
Semi-conservative replication of double-stranded DNA in eukaryotic cells is an asymmetric process involving leading and lagging strand synthesis and different DNA polymerases. We report a study to analyze the effect of these asymmetries when the replication machinery encounters alkylation-induced DNA adducts. The model system is an EBV-derived shuttle vector which replicates in synchrony with the host human cells and carries as marker gene the bacterial gpt gene. A preferential distribution of N-methyl-N-nitrosourea (MNU)-induced mutations in the non transcribed DNA strand of the shuttle vector pF1-EBV was previously reported. The hypermutated strand was the leading strand. To test whether the different fidelity of DNA polymerases synthesizing the leading and the lagging strands might contribute to MNU-induced mutation distribution the mutagenesis study was repeated on the shuttle vector pTF-EBV which contains the gpt gene in the inverted orientation. We show that the base substitution error rates on an alkylated substrate are similar for the replication of the leading and lagging strands. Moreover, we present evidence that the fidelity of replication opposite O6-methylguanine adducts of both the leading and lagging strands is not affected by the 3' flanking base. The preferential targeting of mutations after replication of alkylated DNA is mainly driven by the base at the 5' side of the G residues.  相似文献   

3.
4.
5.
6.
The recombinant shuttle vector pSV2gpt was introduced into V79 Chinese hamster cells, and stable transformants expressing the Escherichia coli gpt gene were selected. Two transformants carrying tandem duplications of the plasmid at a single site were identified and fused to simian COS-1 cells. Plasmid DNA recovered from the heterokaryons was used to transform a Gpt- derivative of E. coli HB101, and the relative frequency of plasmids carrying a mutation in the gpt gene was determined. The high frequency of Gpt- plasmids (ca. 1%) was similar to that observed when plasmid was recovered from COS-1 cells which had been transfected with pSV2gpt. Most of the mutant plasmids had rearrangements in the region containing the gpt gene.  相似文献   

7.
The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.  相似文献   

8.
The distribution of mutations in a particular gene as detected by a selective mutation assay could be affected by the structural properties of the target protein. To investigate this, we have analysed N-methyl-N-nitrosourea (MNU)-induced mutations in two restriction recognition sequences of a target gene for mutation analysis and compared these data with what previously observed in a phenotypic mutation assay. DNA base changes in the Ncil and EcoRV sites of the gpt gene maintained in human cells by a shuttle vector system were measured by restriction fragment length polymorphism/polymerase chain reaction (RFLP/PCR) technique. After MNU-treatment of human cells, mutations were detected in the Ncil recognition sequence but not in the EcoRV site. DNA sequencing analysis revealed that all Ncil-resistant mutations were GC to AT transitions located over four bases of the Ncil recognition sequence. Only one of these mutations drastically affected the functionality of the GPT protein. The Ncil-resistant mutations were randomly distributed in both DNA strands of the gpt gene and were preferentially targeted at guanine residues flanked 5' by a guanine. Our results indicate that the structure of the GPT protein is the main contributor to the strand-specificity of MNU-induced mutations previously reported by using a phenotypic mutation assay. The potential use of the RFLP/PCR technique as a general tool for mutation detection is also discussed.  相似文献   

9.
10.
We have examined the fidelity of replication of the leading and lagging strands of UV-irradiated DNA by using an EBV-derived shuttle vector system which contains as marker gene for mutation analysis the bacterial gpt gene in both orientations relative to the EBV oriP. Human cells stably transformed with this vector were UV irradiated and gpt mutation rate and type were analysed. An increased mutagenicity associated with UV irradiation was observed, but the average error frequency was unaffected by the direction of replication of the target gene. Some variability by position and sequence context of leading and lagging strand errors was detected, suggesting that the different architecture of the replication complex for the two strands might, to some extent, affect mutation spectra. The comparable fidelity of translesion replication on the leading and lagging strands is in agreement with the current model for eukaryotic replication that postulates the simultaneous synthesis of both strands by a DNA polymerase with a proof-reading exonuclease.  相似文献   

11.
12.
13.
14.
A shuttle vector carrying the origin of SV40 replication, the thymidine kinase (tk) gene of herpes simplex virus and the E. coli xanthine guanine phosphoribosyl transferase (gpt) gene has been introduced into human TK- cells. A transformed cell line containing only one stably integrated copy of the shuttle vector was used to study mutations in the introduced tk gene at the molecular level. Without selection for gpt expression, spontaneous TK- mutants arose at a frequency of approximately 10(-4)/generation, and were caused by deletion of plasmid sequences. However, when selection for expression of the gpt gene was applied, the background level of mutations at the tk gene was below 4.10(-6). From this cell line, TK- mutants were obtained after treatment with N-ethyl-N-nitrosourea (ENU). COS fusion appeared to be an efficient method for rescue and amplification of the integrated shuttle vector from the human chromosome. After further amplification and analysis in E. coli, rescued tk genes were easily identified and were shown to be physically unaltered by the rescue procedure. In contrast to rescued tk genes from TK+ cells, those obtained from the ENU-induced TK- mutants were unable to complement thymidine kinase-negative E. coli cells. Two such tk mutations were mapped in E. coli by marker rescue analysis. A GC----AT transition was the cause of both mutations. We show here that plasmid rescue by COS fusion is a reliable system for studying gene mutations in human cells, since no sequence changes occurred in rescued DNA except for the 2 ENU-induced sequence changes.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号