首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of tomato mosaic virus movement protein with tobacco RIO kinase   总被引:4,自引:0,他引:4  
Tomato mosaic virus (ToMV) has a regulatory gene encoding a movement protein (MP) that is involved in the cell-to-cell movement of viral RNA through plasmodesmata. To identify the host cell factors interacting with ToMV MP, we used a recombinant MP probe to isolate cDNA clones from a phage expression library of Nicotiana tabacum by a far-Western screening method. One of the cDNA clones encoded an MP-interacting protein, MIP-T7, homologous to the yeast novel protein kinase, Rio1p. We isolated a full-length cDNA by RT-PCR. The putative gene product was designated NtRIO, and shared 33 and 73% amino acid identity with yeast and Arabidopsis RIO kinases, respectively. In vitro analyses using recombinant proteins showed that NtRIO also interacted with a different MP derived from Cucumber mosaic virus. NtRIO had autophosphorylation activity and phosphorylated ToMV MP. Addition of recombinant tobacco casein kinase 2 resulted in a marked increase in the phosphorylation of NtRIO. The interaction between NtRIO and ToMV MP was inhibited by phosphorylation of NtRIO.  相似文献   

2.
A resistance-breaking strain of tobacco mosaic virus (TMV), Ltb1, is able to multiply in tomatoes with the Tm-2 gene, unlike its parent strain, L. Nucleotide sequence analysis of Ltb1 RNA revealed two amino acid changes in the 30-kD protein: from Cys68 to Phe and from Glu133 to Lys (from L to Ltb1). Strains with these two changes generated in vitro multiplied in tomatoes with the Tm-2 gene and induced essentially the same symptoms as those caused by Ltb1. Strains with either one of the two changes did not overcome the resistance as efficiently as Ltb1, although increased levels of multiplication were observed compared with the L strain. Results showed that both mutations are involved in the resistance-breaking property of Ltb1. Sequence analysis indicated that another resistance-breaking strain and its parent strain had two amino acid changes in the 30-kD protein: from Glu52 to Lys and from Glu133 to Lys. The fact that the amino acid changes occurred in or near the well conserved regions in the 30-kD protein suggests that the mechanism of Tm-2 resistance may be closely related to the fundamental function of the 30-kD protein, presumably in cell-to-cell movement.  相似文献   

3.
4.
In tomato, infections by tomato mosaic virus are controlled by durable Tm-22 resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-22 resistance gene and the susceptible allele, tm-2. The Tm-22 gene was isolated by transposon tagging using a screen in which plants with a destroyed Tm-22 gene survive. The Tm-22 locus consists of a single gene that encodes an 861 amino acid polypeptide, which belongs to the CC-NBS-LRR class of resistance proteins. The putative tm-2 allele was cloned from susceptible tomato lines via PCR with primers based on the Tm-22 sequence. Interestingly, the tm-2 gene has an open reading frame that is comparable to the Tm-22 allele. Between the tm-2 and the Tm-22 polypeptide 38 amino acid differences are present of which 26 are located in the second half of the LRR-domain. Susceptible tomato plants, which were transformed with the Tm-22 gene, displayed resistance against ToMV infection. In addition, virus specificity, displayed by the Tm-22 resistance was conserved in these transgenic lines. To explain the durability of this resistance, it is proposed that the Tm-22-encoded resistance is aimed at the Achilles' heel of the virus.  相似文献   

5.
To gain an insight into the processes underlying disease resistance and its durability, the durable Tm-2(2) resistance gene was compared with the broken Tm-2 resistance gene. The Tm-2 gene of tomato could be isolated via PCR with primers based on the Tm-2(2) sequence. The Tm-2 gene, like the Tm-2(2) gene, encodes an 861 amino acid polypeptide, which belongs to the coiled coil/nucleotide binding site/leucine-rich repeat class of resistance proteins. The functionality and the nature of the isolated Tm-2 gene were confirmed by introducing the gene under the control of the 35S promoter into tomato mosaic virus-susceptible tobacco. This transgenic tobacco was crossed with transgenic tobacco plants producing the movement protein (MP)-authenticated MP as the Avr protein of the Tm-2 resistance. The Tm-2(2) and Tm-2 open reading frames only differ in seven nucleotides, which on a protein level results in four amino acid differences, of which two are located in the nucleotide binding site and two are located in the leucine-rich repeat domain. The small difference between the two proteins suggests a highly similar interaction of these proteins with the MP, which has major implications for the concept of durability. Comparison of the two resistance-conferring alleles (Tm-2 and Tm-2(2)) with two susceptible alleles (tm-2 and lptm-2) allowed discussion of the structure-function relationship in the Tm-2 proteins. It is proposed that the Tm-2 proteins display a partitioning of the leucine-rich repeat domain, in which the N-terminal and C-terminal parts function in signal transduction and MP recognition, respectively.  相似文献   

6.
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22, damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm-22-mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22-mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.  相似文献   

7.
The Tm-2 gene of tomato and its allelic gene, Tm-22, confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-22, Tm-22 confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-22. Although resistance induced by Tm-2 and Tm-22 is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-22 induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-22 but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-22 is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-22 are involved in HR cell death.  相似文献   

8.
9.
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22-carrying tomato plants. A TMV MP chimera with amino acid residues 60–186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60–186 of ToBRFV MP could, but chimeric ToBRFV containing 61–187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60–186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67, N125, K129, A134, I147, and I168 of ToBRFV MP, were critical in overcoming Tm-22-mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22-mediated resistance.  相似文献   

10.
During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV), and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on these results, we discuss possible coevolutionary processes of ToMV and Tm-1.  相似文献   

11.
姜国勇  杨仁崔 《病毒学报》2003,19(4):365-370
Tm-2^2基因在烟草上的转化和表达表明,Tm-2^2基因在同科不同属植物体上的功能没有改变。在两种类型的纯合转化体上,Tm-2^2基因编码蛋白能够抗Tobamovirus属5种不同的毒株,并能被ToMV-2a毒株感染而失去抗病性。这个结果表明:移动蛋白上的氨基酸变异能够影响R蛋白对ToMV的应答反应。Tm-2^2基因转化体在不同启动子的调控下,对ToMV-2a毒株感染所表现的症状不同,说明启动子在Tm-2^2基因的抗病反应中具有非常重要的作用。  相似文献   

12.
Young ND  Zamir D  Ganal MW  Tanksley SD 《Genetics》1988,120(2):579-585
The Tm-2a gene of tomato confers resistance to the viral pathogen, tobacco mosaic virus. Like many economically important plant genes, Tm-2a has been characterized phenotypically and by classical linkage analysis, yet nothing is known about its gene product. We report here the isolation of two DNA clones which are very tightly linked to the Tm-2a gene. These clones were identified by testing 122 genomic clones as hybridization probes against Southern blots consisting of DNA from pairs of nearly isogenic lines with or without the Tm-2a gene. Screening such a large number of clones in a short period of time was facilitated by co-labeling and simultaneous probing of sets of up to 10 random genomic clones. Tightly linked clones were distinguished by the fact that they exhibited one or more restriction fragment length polymorphisms between the nearly isogenic lines. Tight linkage of the clones with Tm-2a was verified in a segregating F(2) population. Both mapped to the same locus 0.4 +/- 0.4 centimorgans away from Tm-2a and may provide starting points for a genomic ;;walk' to this gene. Due to the availability of isogenic lines in many plant species, the strategy outlined in this paper should be widely applicable for selecting DNA clones tightly linked to genes of interest.  相似文献   

13.
14.
Tm-22 is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-22 and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-22-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-22. Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-22 and is required for Tm-22-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.  相似文献   

15.
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.  相似文献   

16.
The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3′ untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.  相似文献   

17.
With the ultimate goal of cloning the Tobacco Mosaic Virus (TMV) resistance gene Tm-2a from tomato by means of positional cloning, a high-resolution map of a 4.3-cM region surrounding the Tm-2a gene has been constructed. In total, 13 RFLP and RAPD markers were mapped in close proximity to Tm-2a using 2112 individuals from an intraspecific Lycopersicon peruvianum backcross. The closest flanking markers were separated from Tm-2a by 0.05 cM on each side. Only one marker, the cDNA clone R12, co-segregated with Tm-2a. In order to physically cover the Tm-2a region, R12 and the flanking DNA marker TG207 were used to select homologous YAC clones. To-date, two YAC-contigs spanning approximately 340 kb and 360 kb have been constructed. The data obtained from these experiments indicate that recombination around the centromere of chromosome 9 is extremely suppressed.  相似文献   

18.
Strain-genotype interaction of tobacco mosaic virus in tomato   总被引:1,自引:0,他引:1  
The symptoms and virus content of isogenic tomato genotypes differing by three tobacco mosaic virus (TMV) resistance factors, Tm-I, Tm-2 and Tm-22, were studied in relation to various isolates of TMV and four strains were identified. The common strain induced no symptoms on plants with any of the factors for resistance, one strain caused symptoms on Tm-I plants, one on Tm-2 plants and one on both Tm-I and Tm-2 plants and also on Tm-I Tm-2 plants. No strain induced symptoms on Tm-22 plants. The gene, Tm-I, was found to be dominant or incompletely dominant for preventing symptom development but was recessive or intermediate for limiting virus multiplication of the common strain. Both Tm-2 and Tm-22 were dominant for a hypersensitive response to the common strain. Virus multiplication was temperature-dependent. The background or varietal genotype did not affect virus multiplication. A systemic necrosis of Tm-22 plants occurred only when heterozygous Tm-22 was not protected by other factors against specific strains of TMV. The complexity of the host genotype, pathogen genotype and environment interactions are outlined and the exploitation of the resistance factors in tomato breeding discussed.  相似文献   

19.
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号