首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.  相似文献   

2.
Meiosis, a specialized cell division with a single cycle of DNA replication round and two consecutive rounds of nuclear segregation, allows for the exchange of genetic material between parental chromosomes and the formation of haploid gametes. The structural maintenance of chromosome (SMC) proteins aid manipulation of chromosome structures inside cells. Eukaryotic SMC complexes include cohesin, condensin and the Smc5-Smc6 complex. Meiotic roles have been discovered for cohesin and condensin. However, although Smc5-Smc6 is known to be required for successful meiotic divisions, the meiotic functions of the complex are not well understood. Here we show that the Smc5-Smc6 complex localizes to specific chromosome regions during meiotic prophase I. We report that meiotic cells lacking Smc5-Smc6 undergo catastrophic meiotic divisions as a consequence of unresolved linkages between chromosomes. Surprisingly, meiotic segregation defects are not rescued by abrogation of Spo11-induced meiotic recombination, indicating that at least some chromosome linkages in smc5-smc6 mutants originate from other cellular processes. These results demonstrate that, as in mitosis, Smc5-Smc6 is required to ensure proper chromosome segregation during meiosis by preventing aberrant recombination intermediates between homologous chromosomes.  相似文献   

3.
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.  相似文献   

4.
The RAD50 gene of Saccharomyces cerevisiae is one of several genes required for recombinational repair of double-strand DNA breaks during vegetative growth and for initiation of meiotic recombination. Rad50 forms a complex with two other proteins, Mre11 and Xrs2, and this complex is involved in double-strand break formation and processing. Rad50 has limited sequence homology to the structural maintenance of chromosomes (SMC) family of proteins and shares the same domain structure as SMCs: N- and C-terminal globular domains separated by two long coiled-coils. However, a notable difference is the much smaller non-coil hinge region between the two coiled-coils. We report here a structural analysis of full-length S. cerevisiae Rad50, alone and in a complex with yeast Mre11 by electron microscopy. Our results confirm that yeast Rad50 does have the same antiparallel coiled-coil structure as SMC proteins, but with no detectable globular hinge domain. However, the molecule is still able to bend sharply in the middle to bring the two catalytic domains together, indicating that the small hinge domain is flexible. We also demonstrate that Mre11 binds as a dimer between the catalytic domains of Rad50, bringing the nuclease activities of Mre11 in close proximity to the ATPase and DNA binding activities of Rad50.  相似文献   

5.
Smc5 and Smc6 proteins form a heterodimeric SMC (structural maintenance of chromosome) protein complex like SMC1-SMC3 cohesin and SMC2-SMC4 condensin, and they associate with non-SMC proteins Nse1 and Nse2 stably and Rad60 transiently. This multiprotein complex plays an essential role in maintaining chromosome integrity and repairing DNA double strand breaks (DSBs). This study characterizes a Schizosaccharomyces pombe mutant rad62-1, which is hypersensitive to methyl methanesulfonate (MMS) and synthetically lethal with rad2 (a feature of recombination mutants). rad62-1 is hypersensitive to UV and gamma rays, epistatic with rhp51, and defective in repair of DSBs. rad62 is essential for viability and genetically interacts with rad60, smc6, and brc1. Rad62 protein physically associates with the Smc5-6 complex. rad62-1 is synthetically lethal with mutations in the genes promoting recovery from stalled replication, such as rqh1, srs2, and mus81, and those involved in nucleotide excision repair like rad13 and rad16. These results suggest that Rad62, like Rad60, in conjunction with the Smc5-6 complex, plays an essential role in maintaining chromosome integrity and recovery from stalled replication by recombination.  相似文献   

6.
Onoda F  Takeda M  Seki M  Maeda D  Tajima J  Ui A  Yagi H  Enomoto T 《DNA Repair》2004,3(4):429-439
SMC6 (RHC18) in Saccharomyces cerevisiae, which is a homologue of the Schizosaccharomyces pombe rad18+ gene and essential for cell viability, encodes a structural maintenance of chromosomes (SMC) family protein. In contrast to the rest of the SMC family of proteins, Smc1-Smc4, which are the components of cohesin or condensin, little is known about Smc6. In this study, we generated temperature sensitive (ts) smc6 mutants of budding yeast and characterized their properties. One ts-mutant, smc6-56, ceased growth soon after up-shift to a non-permissive temperature, arrested in the late S and G2/M phase, and gradually lost viability. smc6-56 cells at a permissive temperature showed a higher sensitivity than wild-type cells to various DNA damaging agents including methyl methanesulfonate (MMS). The rad52 smc6-56 double mutant showed a sensitivity to MMS similar to that of the rad52 single mutant, indicating that Smc6 is involved in a pathway that requires Rad52 to function. Moreover, no induction of interchromosomal recombination and sister chromatid recombination was observed in smc6-56 cells, which occurred in wild-type cells upon exposure to MMS.  相似文献   

7.
Lehmann AR 《DNA Repair》2005,4(3):309-314
The SMC proteins form the cores of three protein complexes in eukaryotes, cohesin, condensin and the Smc5-6 complex. Cohesin holds sister chromatids together after DNA replication and is involved in both the repair of double-strand breaks by homologous recombination and the intra-S-phase checkpoint. Condensin assists in the condensation of chromosomes at mitosis and also has a role in checkpoint control pathways. The Smc5-6 complex is involved in a variety of DNA repair and damage response pathways by as yet unknown mechanisms, but is also associated with repair by homologous recombination.  相似文献   

8.
The structural maintenance of chromosomes (SMC) family of proteins play essential roles in genomic stability. SMC heterodimers are required for sister-chromatid cohesion (Cohesin: Smc1 & Smc3), chromatin condensation (Condensin: Smc2 & Smc4), and DNA repair (Smc5 & Smc6). The SMC heterodimers do not function alone and must associate with essential non-SMC subunits. To gain further insight into the essential and DNA repair roles of the Smc5-6 complex, we have purified fission yeast Smc5 and identified by mass spectrometry the co-precipitating proteins, Nse1 and Nse2. We show that both Nse1 and Nse2 interact with Smc5 in vivo, as part of the Smc5-6 complex. Nse1 and Nse2 are essential proteins and conserved from yeast to man. Loss of Nse1 and Nse2 function leads to strikingly similar terminal phenotypes to those observed for Smc5-6 inactivation. In addition, cells expressing hypomorphic alleles of Nse1 and Nse2 are, like Smc5-6 mutants, hypersensitive to DNA damage. Epistasis analysis suggests that like Smc5-6, Nse1, and Nse2 function together with Rhp51 in the homologous recombination repair of DNA double strand breaks. The results of this study strongly suggest that Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex.  相似文献   

9.
Genome integrity is protected by Cds1 (Chk2), a checkpoint kinase that stabilizes arrested replication forks. How Cds1 accomplishes this task is unknown. We report that Cds1 interacts with Rad60, a protein required for recombinational repair in fission yeast. Cds1 activation triggers Rad60 phosphorylation and nuclear delocalization. A Rad60 mutant that inhibits regulation by Cds1 renders cells specifically sensitive to replication fork arrest. Genetic and biochemical studies indicate that Rad60 functions codependently with Smc5 and Smc6, subunits of an SMC (structural maintenance of chromosomes) complex required for recombinational repair. These studies indicate that regulation of Rad60 is an important part of the replication checkpoint response controlled by Cds1. We propose that control of Rad60 regulates recombination events at stalled forks.  相似文献   

10.
The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis‐segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination‐dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome‐wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage‐induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination‐competent conformation primed for replication restart.  相似文献   

11.
The rad18 gene of Schizosaccharomyces pombe is an essential gene that is involved in several different DNA repair processes. Rad18 (Smc6) is a member of the structural maintenance of chromosomes (SMC) family and, together with its SMC partner Spr18 (Smc5), forms the core of a high-molecular-weight complex. We show here that both S. pombe and human Smc5 and -6 interact through their hinge domains and that four independent temperature-sensitive mutants of Rad18 (Smc6) are all mutated at the same glycine residue in the hinge region. This mutation abolishes the interactions between the hinge regions of Rad18 (Smc6) and Spr18 (Smc5), as does mutation of a conserved glycine in the hinge region of Spr18 (Smc5). We purified the Smc5-6 complex from S. pombe and identified four non-SMC components, Nse1, Nse2, Nse3, and Rad62. Nse3 is a novel protein which is related to the mammalian MAGE protein family, many members of which are specifically expressed in cancer tissue. In initial steps to understand the architecture of the complex, we identified two subcomplexes containing Rad18-Spr18-Nse2 and Nse1-Nse3-Rad62. The subcomplexes are probably bridged by a weaker interaction between Nse2 and Nse3.  相似文献   

12.
Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5-Smc6 complexes. The Smc5-Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5-Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants. These results point towards a role for the Smc5-Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.  相似文献   

13.
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.  相似文献   

14.
Telomerase-deficient mutants of Saccharomyces cerevisiae can survive death by senescence by using one of two homologous recombination pathways. The Rad51 pathway amplifies the subtelomeric Y' sequences, while the Rad50 pathway amplifies the telomeric TG(1-3) repeats. Here we show that telomerase-negative cells require Clb2 (the major B-type cyclin in this organism), in association with Cdc28 (Cdk1), to generate postsenescence survivors at a normal rate. The Rad50 pathway was more sensitive to the absence of Clb2 than the Rad51 pathway. We also report that telomerase RAD50 RAD51 triple mutants still generated postsenescence survivors. This novel Rad50- and Rad51-independent pathway of telomeric recombination also appeared to be controlled by Clb2. In telomerase-positive cells, a synthetic growth defect between mutations in CLB2 and RAD50 or in its partners in the conserved MRX complex, MRE11 and XRS2, was observed. This genetic interaction was independent of Mre11 nuclease activity but was dependent on a DNA repair function. The present data reveal an unexpected role of Cdc28/Clb2 in telomeric recombination during telomerase-independent maintenance of telomeres. They also uncover a functional interaction between Cdc28/Clb2 and MRX during the control of the mitotic cell cycle.  相似文献   

15.
The Smc5-Smc6 complex in Saccharomyces cerevisiae is both essential for growth and important for coping with genotoxic stress. While it facilitates damage tolerance throughout the genome under genotoxin treatment, its function during unperturbed growth is mainly documented for repetitive DNA sequence maintenance. Here we provide physical and genetic evidence showing that the Smc5–Smc6 complex regulates recombination at non-repetitive loci such as centromeres in the absence of DNA damaging agents. Mutating Smc6 results in the accumulation of recombination intermediates at centromeres and other unique sequences as assayed by 2D gel analysis. In addition, smc6 mutant cells exhibit increased levels of Rad52 foci that co-localize with centromere markers. A rad52 mutation that decreases centromeric, but not overall, levels of Rad52 foci in smc6 mutants suppresses the nocodazole sensitivity of these cells, suggesting that the Smc6-mediated regulation of recombination at centromeric regions impacts centromere-related functions. In addition to influencing recombination, the SUMO ligase subunit of the Smc5–Smc6 complex promotes the sumoylation of two kinetochore proteins and affects mitotic spindles. These results suggest that the Smc5–Smc6 complex regulates both recombination and kinetochore sumoylation to facilitate chromosomal maintenance during growth.  相似文献   

16.
Chromatin structure and function are for a large part determined by the six members of the structural maintenance of chromosomes (SMC) protein family, which form three heterodimeric complexes: Smc1/3 (cohesin), Smc2/4 (condensin) and Smc5/6. Each complex has distinct and important roles in chromatin dynamics, gene expression and differentiation. In yeast and Drosophila, Smc6 is involved in recombinational repair, restarting collapsed replication forks and prevention of recombination in repetitive sequences such as rDNA and pericentromeric heterochromatin. Although such DNA damage control mechanisms, as well as highly dynamic changes in chromatin composition and function, are essential for gametogenesis, knowledge on Smc6 function in mammalian systems is limited. We therefore have investigated the role of Smc6 during mammalian spermatogonial differentiation, meiosis and subsequent spermiogenesis. We found that, during mouse spermatogenesis, Smc6 functions as part of meiotic pericentromeric heterochromatin domains that are initiated when differentiating spermatogonia become irreversibly committed toward meiosis. To our knowledge, we are the first to provide insight into how commitment toward meiosis alters chromatin structure and dynamics, thereby setting apart differentiating spermatogonia from the undifferentiated spermatogonia, including the spermatogonial stem cells. Interestingly, Smc6 is not essential for spermatogonial mitosis, whereas Smc6-negative meiotic cells appear unable to finish their first meiotic division. Importantly, during meiosis, we find that DNA repair or recombination sites, marked by γH2AX or Rad51 respectively, do not co-localize with the pericentromeric heterochromatin domains where Smc6 is located. Considering the repetitive nature of these domains and that Smc6 has been previously shown to prevent recombination in repetitive sequences, we hypothesize that Smc6 has a role in the prevention of aberrant recombination events between pericentromeric regions during the first meiotic prophase that would otherwise cause chromosomal aberrations leading to apoptosis, meiotic arrest or aneuploidies.  相似文献   

17.
The Schizosaccharomyces pombe SMC proteins Rad18 (Smc6) and Spr18 (Smc5) exist in a high-M(r) complex which also contains the non-SMC proteins Nse1, Nse2, Nse3, and Rad62. The Smc5-6 complex, which is essential for viability, is required for several aspects of DNA metabolism, including recombinational repair and maintenance of the DNA damage checkpoint. We have characterized Nse2 and show here that it is a SUMO ligase. Smc6 (Rad18) and Nse3, but not Smc5 (Spr18) or Nse1, are sumoylated in vitro in an Nse2-dependent manner, and Nse2 is itself autosumoylated, predominantly on the C-terminal part of the protein. Mutations of C195 and H197 in the Nse2 RING-finger-like motif abolish Nse2-dependent sumoylation. nse2.SA mutant cells, in which nse2.C195S-H197A is integrated as the sole copy of nse2, are viable, whereas the deletion of nse2 is lethal. Smc6 (Rad18) is sumoylated in vivo: the sumoylation level is increased upon exposure to DNA damage and is drastically reduced in the nse2.SA strain. Since nse2.SA cells are sensitive to DNA-damaging agents and to exposure to hydroxyurea, this implicates the Nse2-dependent sumoylation activity in DNA damage responses but not in the essential function of the Smc5-6 complex.  相似文献   

18.
The Smc5/6 complex belongs to the SMC (structural maintenance of chromosomes) family, which also includes cohesin and condensin. In Saccharomyces cerevisiae, the Smc5/6 complex contains six essential non-Smc elements, Nse1-6. Very little is known about how these additional elements contribute to complex function except for Nse2/Mms21, which is an E3 small ubiquitin-like modifier (SUMO) ligase important for Smc5 sumoylation. Characterization of two temperature-sensitive mutants, nse5-ts1 and nse5-ts2, demonstrated the importance of Nse5 within the Smc5/6 complex for its stability and functionality at forks during hydroxyurea-induced replication stress. Both NSE5 alleles showed a marked reduction in Smc5 sumoylation to levels lower than those observed with mms21-11, a mutant of Mms21 that is deficient in SUMO ligase activity. However, a phenotypic comparison of nse5-ts1 and nse5-ts2 revealed a separation of importance between Smc5 sumoylation and the function of the Smc5/6 complex during replication. Only cells carrying the nse5-ts1 allele exhibited defects such as dissociation of the replisome from stalled forks, formation of fork-associated homologous recombination intermediates, and hydroxyurea sensitivity that is additive with mms21-11. These defects are attributed to a failure in Smc5/6 localization to forks in nse5-ts1 cells. Overall, these data support the premise that Nse5 is important for vital interactions between components within the Smc5/6 complex, and for its functionality during replication stress.  相似文献   

19.
Cost GJ  Cozzarelli NR 《Genetics》2006,172(4):2185-2200
Heterodimers of structural maintenance of chromosomes (SMC) proteins form the core of several protein complexes involved in the organization of DNA, including condensation and cohesion of the chromosomes at metaphase. The functions of the complexes with a heterodimer of Smc5p and Smc6p are less clear. To better understand them, we created two S. cerevisiae strains bearing temperature-sensitive alleles of SMC5. When shifted to the restrictive temperature, both mutants lose viability gradually, concomitant with the appearance of nuclear abnormalities and phosphorylation of the Rad53p DNA damage checkpoint protein. Removal of Rad52p or overexpression of the SUMO ligase Mms21p partially suppresses the temperature sensitivity of smc5 strains and increases their survival at the restrictive temperature. At the permissive temperature, smc5-31 but not smc5-33 cells exhibit hypersensitivity to several DNA-damaging agents despite induction of the DNA damage checkpoint. Similarly, smc5-31 but not smc5-33 cells are killed by overexpression of the SUMO ligase-defective Mms21-SAp but not by overexpression of wild-type Mms21p. Both smc5 alleles are synthetically lethal with mms21-SA and exhibit Rad52p-independent chromosome fragmentation and loss at semipermissive temperatures. Our data indicate a critical role for the S. cerevisiae Smc5/6-containing complexes in both DNA repair and chromosome segregation.  相似文献   

20.
Structural maintenance of chromosomes (SMC) complexes and DNA topoisomerases are major determinants of chromosome structure and dynamics. The cohesin complex embraces sister chromatids throughout interphase, but during mitosis most cohesin is stripped from chromosome arms by early prophase, while the remaining cohesin at kinetochores is cleaved at anaphase. This two-step removal of cohesin is required for sister chromatids to separate. The cohesin-related Smc5/6 complex has been studied mostly as a determinant of DNA repair via homologous recombination. However, chromosome segregation fails in Smc5/6 null mutants or cells treated with small interfering RNAs. This also occurs in Smc5/6 hypomorphs in the fission yeast Schizosaccharomyces pombe following genotoxic and replication stress, or topoisomerase II dysfunction, and these mitotic defects are due to the postanaphase retention of cohesin on chromosome arms. Here we show that mitotic and repair roles for Smc5/6 are genetically separable in S. pombe. Further, we identified the histone variant H2A.Z as a critical factor to modulate cohesin dynamics, and cells lacking H2A.Z suppress the mitotic defects conferred by Smc5/6 dysfunction. Together, H2A.Z and the SMC complexes ensure genome integrity through accurate chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号