首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metronidazole (2-methyl-5-nitroimidazole-1-ethanol) at 1–2 mM levels has been shown to be a selective inhibitor of nitrogenase activity in Anabaena. Two constitutive hydrogenases and photosynthesis are insensitive to metronidazole at these same concentrations. At higher concentrations metronidazole inhibits photosynthesis in Anabaena while photoreduction and to a lesser extent photohydrogen production are retarded in Scenedesmus. Respiration is slightly stimulated at high metronidazole levels in both algae. The reductant source for nitrogenase in Anabaena and photohydrogen production and photoreduction electron transport in Scenedesmus are discussed. Due to the activity of metronidazole as a selective inhibitor of ferredoxin-associated processes, it should prove to be useful in N2 fixation studies and in distinguishing between ferredoxin-linked reactions of different sensitivities and other activities not associated with low reduction potential components.  相似文献   

2.
3.
Iron-dependent formation of ferredoxin and flavodoxin was determined in Anabaena ATCC 29413 and ATCC 29211 by a FPLC procedure. In the first species ferredoxin is replaced by flavodoxin at low iron levels in the vegetative cells only. In the heterocysts from Anabaena ATCC 29151, however, flavodoxin is constitutively formed regardless of the iron supply.Replacement of ferredoxin by flavodoxin had no effect on photosynthetic electron transport, whereas nitrogen fixation was decreased under low iron conditions. As ferredoxin and flavodoxin exhibited the same Km values as electron donors to nitrogenase, an iron-limited synthesis of active nitrogenase was assumed as the reason for inhibited nitrogen fixation. Anabaena ATCC 29211 generally lacks the potential to synthesize flavodoxin. Under iron-starvation conditions, ferredoxin synthesis is limited, with a negative effect on photosynthetic oxygen evolution.  相似文献   

4.
Summary Hydrogenase and nitrogenase activities of sulfate-reducing bacteria allow their adaptation to different nutritional habits even under adverse conditions. These exceptional capabilities of adaptation are important factors in the understanding of their predominant role in problems related to anaerobic metal corrosion. Although the D2–H+ exchange reaction indicated thatDesulfovibrio desulfuricans strain Berre-Sol andDesulfovibrio gigas hydrogenases were reversible, the predominant activity in vivo was hydrogen uptake. Hydrogen production was restricted to some particular conditions such as sulfate or nitrogen starvation. Under diazotrophic conditions, a transient hydrogen evolution was followed by uptake when dinitrogen was effectively fixed. In contrast, hydrogen evolution proceeded when acetylene was substituted as the nitrogenase substrate. Hydrogen can thus serve as an electron donor in sulfate reduction and nitrogen metabolism.  相似文献   

5.
A physical map of the Anabaena genome permitted the localization of its genes to chromosomal fragments generated by rarely cutting restriction endonucleases and separated by pulsed-field gel electrophoresis. We introduce a novel means of mapping more precisely to c. 20 kb by use of rare restriction sites within vectors bearing cloned sequences that undergo homologous recombination with the genome. We thereby localize and orient genes encoding principal photosynthetic pigments. The relative spacing of loci within a single restriction fragment was determined with even higher resolution, as illustrated for genes required for heterocyst development and nitrogen fixation that were marked with transposons. Small, newly visualized restriction fragments of the chromosome were also mapped.  相似文献   

6.
7.
Effects of diazepam (Valium) on photosynthesis, chlorophyll/photosynthesis ratios, respiration, uptake of rubidium ions, and ultrastructure of Scenedesmus obliquus synchronized by a light-dark regimen of 14:10 hrs were determined. 80 and 160 muM diazepam, added to the nutrient medium at the start of the light-dark change (i.e., start of the cell cycle) gradually reduced rates of photosynthesis, below the initial rates from the beginning of the experiment. Contents of chlorophyll, however, remained nearly unaffected. Consequently, the diazepam-treated cells had a higher chlorophyll/photosynthesis ratio--also with regard to respiration in order to calculate the gross photosynthesis. The occurrence of photorespiration cannot be assumed. The net influx of rubidium was slightly reduced by 100 muM diazepam 0.5 and 2.0 hrs after the start of the cell cycle and was strongly inhibited after 5 to 14 hrs. 80 and 160 muM diazepam caused separation of thylakoids, formation of giant mitochondria and enlargement of vacuoles.  相似文献   

8.
In cyanobacteria an increasing number of low potential electron carriers is found, but in most cases their contribution to metabolic pathways remains unclear. In this work, we compare recombinant plant-type ferredoxins from Anabaena sp. PCC 7120, encoded by the genes petF and fdxH, respectively, and flavodoxin from Anabaena sp. PCC 7119 as electron carriers in reconstituted in vitro assays with nitrogenase, Photosystem I, ferredoxin-NADP+ reductase and pyruvate-ferredoxin oxidoreductase. In every experimental system only the heterocyst ferredoxin catalyzed an efficient electron transfer to nitrogenase while vegetative cell ferredoxin and flavodoxin were much less active. This implies that flavodoxin is not able to functionally replace heterocyst ferredoxin. When PFO-activity in heterocyst extracts was reconstituted under anaerobic conditions, both ferredoxins were more efficient than flavodoxin, which suggested that this PFO was of the ferredoxin dependent type. Flavodoxin, synthesized under iron limiting conditions, replaces PetF very efficiently in the electron transport from Photosystem I to NADP+, using thylakoids from vegetative cells.Abbreviations BSA bovine serum albumin - FdxH heterocyst ferredoxin - Fld flavodoxin - FNR ferredoxin-NADP+ reductase - MV methyl viologen - PetF vegetative cell ferredoxin - PFO pyruvate-ferredoxin oxidoreductase - Pyr piruvate - PS I Photosystem I  相似文献   

9.
Photostimulation of nitrogen fixation in Anabaena cylindrica   总被引:5,自引:0,他引:5  
  相似文献   

10.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

11.
12.
13.
Effects of diazepam (Valium) on photosynthesis, chlorophyll/photosynthesis ratios, respiration, uptake of rubidium ions, and ultrastructure of Scenedesmus obliquus synchronized by a light-dark regimen of \(14:\overline {10}\) hrs were determined. 80 and 160 μM diazepam, added to the nutrient medium at the start of the light-dark change (i.e., start of the cell cycle) gradually reduced rates of photosynthesis below the initial rates from the beginning of the experiment. Contents of chlorophyll, however, remained nearly unaffected. Consequently, the diazepam-treated cells had a higher chlorophyll/photosynthesis ratio—also with regard to respiration in order to calculate the gross photosynthesis. The occurrence of photorespiration cannot be assumed. The net influx or rubidium was slightly reduced by 100 μM diazepam 0.5 and 2.0 hrs after the start of the cell cycle and was strongly inhibited after 5 to 14 hrs. 80 and 160 μM diazepam caused separation of thylakoids, formation of giant mitochondria and enlargement of vacuoles. The results are discussed and it is finally suggested that diazepam acts on different membrane systems. Furthermore an ATP deficiency cannot be excluded.  相似文献   

14.
15.
16.
Summary The response of the terrestrial blue-green algae Nostoc flagelliforme, Nostoc commune, and Nostoc spec. to water uptake has been investigated after a drought period of approximately 2 years. Rapid half-times of rewetting (0.6, 3.3, and 15.5 min, respectively) are found. The surfaceto-mass ratio of the three species is inversely correlated to the speed of water uptake and loss. The ecological relevance of these different time courses is discussed.Respiration starts immediately after a 30-min rewetting period, whereas photosynthetic oxygen evolution reaches its maximum activity after 6 and 8 h with N. commune and N. flagelliforme, respectively. In the dark, recovery of oxygen uptake by N. commune is somewhat impaired, while slightly stimulated with N. flagelliforme. With both species, recovery of photosynthesis is inhibited by darkness.Using colonies kept dry for two years, nitrogenase activity of N. commune attains its maximum 120 to 150 h after rewetting, while only 50 h were needed with algal mats kept dry for two days.Thus, after a 2-year drought period, the physiological sequence of reactivation is respiration—photosynthesis—nitrogen fixation. Respiration and photosynthesis precede growth and are exhibited by existing vegetative cells, whereas recovery of nitrogen fixation is dependent on newly differentiated heterocysts.  相似文献   

17.
植物的光合作用与光合氮、碳代谢的耦联及调节   总被引:16,自引:0,他引:16  
概述了光合作用反应与CO2同化和NO^-3/NO^-2还原的耦联关系,提出了应该从氮,碳代谢整合角度讨论作动和光合作用,以便根据生产目的,调节作物的氮,碳代谢,实现农业生产的高产,优质。  相似文献   

18.
D M Pederson  A Daday  G D Smith 《Biochimie》1986,68(1):113-120
The hydrogenase activities of the heterocystous cyanobacteria Anabaena cylindrica and Mastigocladus laminosus are nickel dependent, based on their inability to consume hydrogen with various electron acceptors or produce hydrogen with dithionite-reduced methyl viologen, after growth in nickel-depleted medium. Upon addition of nickel ions to nickel-deficient cultures of A. cylindrica, the hydrogenase activity recovered in a manner which was protein synthesis-dependent, the recovery being inhibited by chloramphenicol. We have used the nickel dependence of the hydrogenase as a probe of the possible roles of H2 consumption in enhancing nitrogen fixation, and particularly for protecting nitrogenase against oxygen inhibition. Although at the usual growth temperatures (25 degrees for A. cylindrica and 40 degrees for M. laminosus), the cells consume H2 vigorously in an oxyhydrogen reaction after growth in the presence of nickel ions, we have not found that the reaction confers any significant additional protection of nitrogenase, either at aerobic pO2 (for both organisms) or at elevated pO2 (for A. cylindrica). However, at elevated temperatures (e.g., 40 degrees for A. cylindrica and 48 degrees for M. laminosus) a definite protective effect was observed. At these temperatures both organisms rapidly lost acetylene reduction activity under aerobic conditions. When hydrogen gas (10%) was present, the cells retained approximately 50% of the nitrogenase activity observed under anaerobic conditions (argon gas phase). No such protection by hydrogen gas was observed with nickel-deficient cells. Studies with cell-free extracts of A. cylindrica showed that the predominant effect of temperature was not due to thermal inactivation of nitrogenase.  相似文献   

19.
20.
Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria.   总被引:9,自引:0,他引:9  
J Meyer  B C Kelley  P M Vignais 《Biochimie》1978,60(3):245-260
The photosynthetic bacteria are found in a wide range of specialized aquatic environments. These bacteria represent important members of the microbial community since they are capable of carrying out two of the most important processes on earth, namely, photosynthesis and nitrogen fixation, at the expense of solar energy. Since the discovery that these bacteria could fix atmospheric nitrogen, there has been an intensification of studies relating to both the biochemistry and physiology of this process. The practical importance of this field is emphasized by a consideration of the tremendous energy input required for the production of artificial nitrogenous fertilizer. The present communication aims to briefly review the current state of knowledge relating to certain aspects of nitrogen fixation by the photosynthetic bacteria. The topics that will be discussed include a general survey of the nitrogenase system in the various photosynthetic bacteria, the regulation of both nitrogenase biosynthesis and activity, recent advances in the genetics of the nitrogen fixing system, and the hydrogen cycle in these bacteria. In addition, a brief discussion of some of some of the possible practical applications provided by the photosynthetic bacteria will be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号