首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
ABCA1 transporter is known to play important role in the cholesterol transport from peripheral tissues. However its contribution in atherosclerosis development remains not completely understood. Using Real Time PCR, a significant reduction of ABCA1 mRNA level in leukocytes of patients with atherosclerosis was determined when compared with controls. Mean ABCA1 expression levels in leukocytes for the group of patients and for the control group are 0.57 +/- 0.28 and 0.93 +/- 0.14 (p = 0.02). At the same time we detected a significant increase of ABCA1 mRNA level in macrophages of patients when compared with controls. Mean ABCA1 expression levels in macrophages for the group of patients and for the control group are 1.32 +/- 0.10 and 0.90 +/- 0.14 (p = 0.014). In summary, we suggest that expression level of ABCA1 gene may contribute to the development of atherosclerosis.  相似文献   

2.
ABCA1 transporter is one of the key factors defining the level of antiatherogenic HDL in plasma. It is involved in cholesterol removal from peripheral tissues by reverse cholesterol transport. However, the influence of ABCA1 mRNA and ABCA1 protein levels in macrophages on atherosclerosis remains unexplored. Using real-time PCR, we determined the ABCA1 mRNA level in macrophages cultured for 5 days with macrophage colony-stimulating factor (M-CSF). The ABCA1 mRNA level in macrophages from patients with arterial stenosis was increased compared to the control group, p = 0.04. Western-blot assayed ABCA1 protein content in macrophages from patients was significantly lower than in the control group, p = 0.01. Our results suggest that ABCA1 mRNA and ABCA1 protein levels in macrophages may be important factors in the development of atherosclerosis.  相似文献   

3.
4.
5.
The antiatherogenic role of high-density lipoproteins (HDL) was demonstrated by numerous experimental, clinical and epidemiological studies. The mechanism underlying the antiatherogenic potential of HDL is based on their involvement in reverse cholesterol transport (RCT) from peripheral tissues into the liver. Transmembrane transporter ABCG1 is a key RCT protein. Its function is to remove cholesterol from cells and transfer it to HDL. The role of ABCG1 transporter in the development of atherosclerosis in humans remains unexplored. The goal of our study was to investigate the expression of ABCG1 gene in patients with atherosclerosis. Real-time PCR was applied to study ABCG1 mRNA content in leukocytes, monocytes, and macrophages activated with macrophage colony-stimulating factor (M-CSF) from patients with atherosclerosis and healthy people. The amount of ABCG1 protein in monocytes and macrophages of patients and healthy donors was assayed by immunoblotting. It was found that the level of ABCG1 mRNA (p < 0.001) and ABCG1 protein (p < 0.05) was lower in macrophages of patients with atherosclerosis. The level of ABCG1 mRNA in monocytes of patients with artery occlusion was lower than in patients with features of lesser stenosis and the control group (p < 0.05). No correlation was found between ABCG1 gene expression and total and HDL cholesterol levels in the blood plasma. It can be concluded that reduced ABCG1 gene expression in monocytes and macrophages may be critical for the atherosclerosis progression.  相似文献   

6.
7.
α-Tocopherol (a form of vitamin E) is a fat-soluble vitamin that can prevent lipid peroxidation of cell membranes. This antioxidant activity of α-tocopherol can help to prevent cardiovascular disease, atherosclerosis and cancer. We investigated the α-tocopherol level and the expression of α-tocopherol transfer protein (α-TTP) in the leukocytes of children with leukemia. The plasma and erythrocyte α-tocopherol levels did not differ between children with leukemia and the control group. However, lymphocytes from children with leukemia had significantly lower α-tocopherol levels than lymphocytes from the controls (58.4±39.0 ng/mg protein versus 188.9±133.6, respectively; p&lt;0.05), despite the higher plasma α-tocopherol/cholesterol ratio in the leukemia group (5.83±1.64 μmol/mmol versus 4.34±0.96, respectively; p&lt;0.05). No significant differences in the plasma and leukocyte levels of isoprostanes (the oxidative metabolites of arachidonic acid) were seen between the leukemia patients and controls. The plasma level of acrolein, a marker of oxidative stress, was also similar in the two groups. Investigation of α-TTP expression by leukocytes using real-time PCR showed no difference between the two groups. These findings suggest that there may be comparable levels of lipid peroxidation in children with untreated leukemia and controls, despite the reduced α-tocopherol level in leukemic leukocytes.  相似文献   

8.
An elevation in blood glucose concentration leads to increased risk of developing diabetes‐associated atherosclerotic cardiovascular disease due to an excessive accumulation of cholesterol in arterial macrophages. ATP‐binding cassette transporter A1 (ABCA1) is an atheroprotective protein that mediates the export of cholesterol from macrophages. The present study aims to investigate the effect of hyperglycemia on the regulation of ABCA1 expression and to explore its underlying mechanisms of regulation in macrophages. Our results show that high glucose activates the extracellular signal‐regulated kinases (ERK) signaling pathway via reactive oxygen species (ROS) production, which in turn down‐regulates ABCA1 mRNA and protein expression. This down‐regulation is mediated by accelerating ABCA1 mRNA and protein degradation in macrophages exposed to high concentrations of glucose. Our results provide evidence for the first time that hyperglycemia inhibits ABCA1 expression by ERK‐modulated ABCA1 mRNA and protein stability. Overall, these results provide a mechanism for hyperglycemia‐induced reduction in ABCA1 expression, which suggests a promising strategy for the treatment of diabetes‐associated atherosclerosis. J. Cell. Biochem. 114: 1364–1373, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
目的:探讨胃窦胃癌组织中人巨噬细胞移动抑制因子MIF mRNA的表达,并分析其与幽门螺杆菌感染的关系,分析二者在胃窦胃癌发生中的相关性。方法:选取2013年1月至2014年12月于我院收治的胃窦胃癌患者30例作为观察组,另随机选择10例胃窦胃炎患者作为对照组,采用14C-尿素呼气试验(UBT)检测各组患者有无幽门螺杆菌感染,定量逆转录PCR检测观察组患者及对照组患者组织中MIF mRNA表达。统计分析不同组织中MIF mRNA表达与幽门螺杆菌感染之间的关系。结果:观察组组织中MIF mRNA的表达为(1.09±0.11),高于对照组组织的(0.21±0.08),差异具有统计学意义(P0.05)。进一步亚组分析,观察组合并幽门螺杆菌感染组织中MIF mRNA的表达为(1.24±0.14),高于非幽门螺杆菌感染者的(1.09±0.11),差异具有统计学意义(P0.05)。结论:MIF mRNA在胃窦胃癌组织中高表达,幽门螺杆菌感染促进了MIF mRNA的表达,共同促进了胃窦胃癌的发生发展。  相似文献   

10.
Apolipoprotein E (apoE) produced by macrophages in the arterial wall protects against atherosclerosis, but the regulation of its secretion by these cells is poorly understood. Here we investigated the contribution of the adenosine triphosphate binding cassette transporters ABCA1 and ABC8 to the secretion of apoE from either primary human monocyte-derived macrophages (HMDM) or human THP1 macrophages. During incubations of up to 6 h, apoE secretion from both THP1 macrophages and HMDM was stimulated by 8-Br-cAMP, which activates ABCA1 expression. The putative ABCA1 inhibitor glyburide and antisense oligonucleotides directed against ABCA1 mRNA significantly reduced apoE secretion from THP1 macrophages and HMDM. Antisense oligonucleotides directed against ABC8 mRNA also inhibited apoE secretion, although this inhibition was less pronounced and consistent than in the case of ABCA1. ApoE secretion from HMDM of ABCA1-deficient patients with Tangier disease was also decreased. ApoE mRNA expression was not affected by inhibition of ABCA1 or ABC8 in normal HMDM or the lack of functional ABCA1 in HMDM from Tangier disease patients. Inhibition of ABCA1 in HMDM prevented the occurrence of anti-apoE-immunoreactive granular structures in the plasma membrane. We conclude that ABCA1 and, to a lesser extent, ABC8 both promote secretion of apoE from human macrophages.  相似文献   

11.
Wogonin, one component in Scutellaria baicalensis Georgi extracts, has several beneficial properties for cancers and inflammatory diseases. However, the efficacy of wogonin in cholesterol metabolism of macrophages remains unknown. In macrophages, cholesterol uptake is controlled by scavenger receptors (SR-A and CD36) and cholesterol efflux by SR-BI, ATP-binding cassette transporter-A1 (ABCA1) and ABCG1. In the present study, we investigated the effect and underlying molecular mechanism of wogonin on the formation of macrophage foam cells by murine J774.A1 macrophages. Wogonin attenuated oxidized low-density lipoprotein (oxLDL)-induced cholesterol accumulation in macrophages. The binding of oxLDL to macrophages and protein expression of SR-A and CD36 were not affected by wogonin. Wogonin enhanced cholesterol efflux and increased the protein level of ABCA1 without affecting the protein expression of SR-BI or ABCG1. Inhibition of ABCA1 by pharmacological inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt or neutralizing antibody abolished this suppressive effect of wogonin on lipid accumulation. Moreover, the up-regulation of ABCA1 protein by wogonin resulted from a decrease in degradation rate of ABCA1 protein, with no effect on ABCA1 mRNA expression. This reduction in ABCA1 degradation was due to increased protein phosphatase 2B (PP2B)-mediated ABCA1 dephosphorylation, as evidenced by increased interaction between ABCA1 and PP2B; pharmacological inhibition of PP2B would prevent wogonin-induced ABCA1 protein expression, dephosphorylation and attenuation of lipid accumulation. Collectively, wogonin increases the protein stability of ABCA1 via PP2B-mediated dephosphorylation, thus leading to reduced cholesterol accumulation in macrophage foam cells.  相似文献   

12.
13.
Increased plasma levels of insulin-like growth factor 1 (IGF-1) are observed in advanced arteriosclerosis, but the reasons for these elevated levels remain unknown. One possibility to explain them is variation in the sequences that control IGF-1 gene expression. The goal of this study was to determine the effect of molecular variants of the IGF-1 P1 promoter on IGF-1 serum levels and to determine the impact of IGF-1 levels on the severity of coronary atherosclerosis. Methods: Blood samples were collected from 101 consecutive patients undergoing routine angiography. Genomic DNA was isolated from the nucleated cells of the blood plasma as described (2). Based on the presence of conformational differences in the DNA strand and on the absence of single nucleotide polymorphisms, the DNA from 38 patients was further analyzed by the “allelic ladder” method to determine the number of repeated GC dinucleotides in the P1 promoter of the IGF-1 gene. In addition, we analyzed serum growth hormone levels in order to examine the effect on systemic IGF-1 synthesis. Results: Conformational differences in the P1 promoter of the IGF-1 gene were observed in 38 out of the 101 patients. Several genotypes, depending on the number of GC repeats, were observed (11/19,17/19,18/19,18/21,19/19,19/20,19/21). Interestingly, a family history of coronary artery disease was seen less often among individuals heterozygous for the GC repeats. A lower IGF-1 levels were seen in non-variant carriers (homozygous genotypes for 19 or 21 repeats of GC, or heterozygous genotype 19/21) when compared to the variant group (other heterozygous genotypes then 19/21) (181.6 ± 47.9 ng/mL vs. 227.7 ± 73.7, p = 0.026). A correlation between IGF-1, IGF-binding protein number 3, and growth hormone levels (p = ns) was not observed, and there were no significant differences in the growth hormone levels in the studied group of patients (p = ns).  相似文献   

14.
15.
Accumulation of cholesterol in arterial macrophages may contribute to diabetes-accelerated atherosclerotic cardiovascular disease. The ATP-binding cassette transporter ABCA1 is a cardioprotective membrane protein that mediates cholesterol export from macrophages. Factors elevated in diabetes, such as reactive carbonyls and free fatty acids, destabilize ABCA1 protein in cultured macrophages, raising the possibility that impaired ABCA1 plays an atherogenic role in diabetes. We therefore examined the modulation of ABCA1 in two mouse models of diabetes. We isolated peritoneal macrophages, livers, kidneys, and brains from type 1 non-obese diabetic (NOD) mice and mice made diabetic by viral-induced autoimmune destruction of pancreatic β-cells, and we measured ABCA1 protein and mRNA levels and cholesterol contents. ABCA1 protein levels and cholesterol export activity were reduced by 40–44% (P < 0.01) in peritoneal macrophages and protein levels by 48% (P < 0.001) in kidneys in diabetic NOD mice compared with nondiabetic animals, even though ABCA1 mRNA levels were not significantly different. A similar selective reduction in ABCA1 protein was found in peritoneal macrophages (33%, P < 0.05) and kidneys (35%, P < 0.05) from the viral-induced diabetic mice. In liver and brain, however, diabetes had no effect or slightly increased ABCA1 protein and mRNA levels. The reduced ABCA1 in macrophages and kidneys was associated with increased cholesterol content. Impaired ABCA1-mediated cholesterol export could therefore contribute to the increased atherosclerosis and nephropathy associated with diabetes.  相似文献   

16.
Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.  相似文献   

17.
18.
Ritonavir, a protease inhibitor used in combination antiretroviral therapy for HIV-1 infection, is associated with an increased risk of premature atherosclerosis. The aim of the present study was to assess the effects of ritonavir, in the absence of added lipoproteins, on the expression of genes that control cholesterol trafficking in human monocytes/macrophages. Design: THP-1 cells were used to study the effects of ritonavir on the expression of CD36, ATP binding cassette transporters A1 (ABCA1) and G1 (ABCG1), scavenger receptor B class I (SR-BI), caveolin-1 and sterol 27-hydroxylase (CYP27). Exposure to ritonavir (2.5 mug/ml) increased CD36 protein (28%, P < 0.05) and mRNA (38%, P < 0.05) in differentiated THP-1 macrophages, but not in undifferentiated monocytes. This effect was not related to the increase in PPARgamma expression (51%, P < 0.05) caused by ritonavir. Ritonavir also reduced SR-BI protein levels (46%, P < 0.05) and increased CYP27 (43%, P < 0.05) and ABCA1 (49%, P < 0.05) mRNA expression. Liver X receptor alpha (LXRalpha) mRNA, protein and binding activity were also increased by ritonavir treatment. Conclusions: We propose that ritonavir induces ABCA1 expression in THP-1 macrophages through LXRalpha. The increase in ABCA1 and other cholesterol efflux mediators, such as CYP27, may compensate CD36 induction. Therefore, we suggest that the net effect of ritonavir on macrophages in the absence of lipoproteins is not clearly proatherogenic.  相似文献   

19.
Markers of monocyte activation play a critical role in atherosclerosis, but little is known about the genetic influences on cellular levels. Therefore, we investigated the influence of genetic variants in monocyte differentiation antigen (CD14), toll-like receptor-4 (TLR4), toll-like receptor-2 (TLR2), and myeloperoxidase (MPO) on monocyte surface receptor levels. The study sample consisted of 1,817 members of a biracial cohort of adults from the Atherosclerosis Risk in Communities Carotid MRI Study. Monocyte receptors were measured using flow cytometry on fasting whole blood samples. TLR2 rs1816702 genotype was significantly associated with CD14+/TLR2+ percent of positive cells (%) and median fluorescence intensity (MFI) in whites but not in blacks (p < 0.001). Specifically, the presence of the minor T-allele was associated with increased receptor levels. In blacks, TLR4 rs5030719 was significantly associated with CD14+/TLR4+ monocytes (MFI) with mean ± SE intensities of 16.7 ± 0.05 and 16.0 ± 0.14 for GG and GT/TT genotypes, respectively (p < 0.001). Variants in TLR2 and TLR4 were associated with monocyte receptor levels of TLR2 and TLR4, respectively, in a biracial cohort of adults. To our knowledge, this is the first study to look at associations between variants in the toll-like receptor family and toll-like receptor levels on monocytes.  相似文献   

20.
ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound protein that regulates cardiovascular disease including atherosclerosis by the efflux of excess cholesterol from cells and by suppression of inflammation. Using a mouse macrophage cell line Raw264.7, we studied the importance of toll-like receptor 2 (TLR2) on ABCA1 expression and the signaling pathway responsible for TLR2-mediated ABCA1 expression. Interestingly, our data demonstrated that treatment of macrophages with TLR2 agonist Pam3CSK4 significantly increased ABCA1 mRNA and protein levels. We found that ABCA1 induction is myeloid differentiation primary response gene 88 (MyD88)-dependent as well as TLR2-dependent. ABCA1 induction upon Pam3CSK4 is controlled by protein kinase C-η (PKC-η) and phospholipase D2 (PLD2). Furthermore, direct treatment of dioctanoyl phosphatidic acid (diC8PA) into cells also induced ABCA1 mRNA and protein indicating that PLD2-mediated PA involve in the TLR2-stimulated ABCA1 expression. Cumulatively, these results demonstrate for the first time that activation of PKC-η and PLD2 signaling pathway is an important mechanism for regulation of TLR2-induced ABCA1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号