首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G2 cells progressed to mitosis in register and without arrest in G2. Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G2 arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delay suggests a common basis for delay induction in S and G2 phases.  相似文献   

2.
NHIK 3025 cells were synchronized by repeated mitotic selection. The S-phase was determined by 3H-thymidine incorporation and scintillation counting. By comparing the age-response surves of aerobic cells irradiated with 500 rad with those of extremely hypoxic (less than4 p.p.m. O2) cells irradiatedwith 1500 rad, it was found that the sensitizing effect of oxygen was not constant throuhgout the cycle. It was significantly higher in S, G2 and mitosis than in G1. No significant sensitizing effect of 120 p.p.m. O2 (compared with less than4 p.p.m.O2) was found on cells in G1 when the cells were irradiated with 1500 rad. In S, G2 and mitosis, however, the sensitizing effect of oxygen at 120 p.p.m. is considered to be significant. Experiments performed with cells irradiated with 2000 rad incontact with either less than4 p.p.m. O2 or 80 p.p.m. O2 showed the same trend, little sensitizing effect in G1 and higher in S, G2 andmitosis. Dose-response curves for cells in mid-G1 and mid-S under aerobic and extremely hypoxic conditions were well fitted by the formula S=exp (-alphaD-betaD2). From the dose-response curves it was conculded that the change in the sensitizing effect of oxygen throughout the cell-cycle only appeared for low doses (in the dose region where alpha dominates). The sensitizing effect of oxygen on cells in mid-G1 was found to be increasing with increasing dose.  相似文献   

3.
Postreplication repair in synchronous Chinese hamster cells was determined after split doses of ultraviolet (UV) radiation. Repair was enhanced by irradiation of cells in G2 or S-phase with a small dose of UV radiation at least 1.5 h before a three-fold larger dose of UV. There was significantly greater enhancement when the first dose was given in G2 than when it was given in the S-phase 0.5-1.5 h before the test dose. These data indicate that enhancement of postreplication repair does not require active DNA replication and qualitatively is independent of when in the cell cycle the cells are irradiated.  相似文献   

4.
Summary The varying sensitivity to radiation in the different phases of the cell cycle was investigated using L-929 cells of the mouse. The cells were synchronized by mechanical selection of mitotic cells. The synchronous populations were X-irradiated with a single dose of 10 Gy in the middle of the G1-phase, at the G1/S-transition or in the middle of the S-phase, respectively. The radiation effect was determined in 2 h intervals a) by14C-TdR incorporation (IT) into the DNA, b) by autoradiography (AR), c) by flow cytometry (FCM). The incorporation rate decreased in all three cases, but the reasons appeared to be different, as can be derived from FCM and AR data: After irradiation in G1, a fraction of cells was prevented from entering S-phase, after irradiation at G1/S a proportion of cells was blocked in the S-phase, and after irradiation in S, DNA synthesis rate was reduced. As a consequence of these effects, the mean transition time through S-phase increased. The G2 blocks, obtained after irradiation at the three stages of the cycle were also different: Cells irradiated in G1 are partly released from the block after 10 h. Irradiation at G1/S caused a persisting accumulation of 50% of the cells in G2, and for irradiation in S more than 80% of the cells were arrested in G2.  相似文献   

5.
The relative biological effectiveness (RBE) of neutrons and other types of densely ionizing radiation appears to be close to 1.0 for the induction of strand breaks, but considerably higher RBEs have been found for cellular end points such as colony-forming ability. This may be due to differences in the processing of strand breaks or to the involvement of other lesions whose yields are more dependent on radiation quality. Because cell cycle delays may be of great importance in the processing of DNA damage, we determined the RBE for disturbances of the G1 phase in four different cell types (Be11 melanoma, 4197 squamous cell carcinoma, EA14 glioma, GM6419 fibroblasts) and compared them with the RBE for cell inactivation. The method we used to determine the progress from G1 into S was as follows: Cells were serum-deprived for a number of days and then stimulated to grow with culture medium containing normal amounts of serum. Immediately before the change of medium, cells were exposed to graded doses of either 240 kV X rays or 6 MeV neutrons. At different times afterward, cells were labeled with BrdU and the numbers of active S-phase cells were assessed using two-parameter flow cytometry. For all four cell types, cells started to progress from G1 into S after a few hours. Radiation suppressed this process in all cases, but there were some interesting differences. For Be11 and 4197 cells, the most obvious effect was a delay in G1; the labeling index increased a few hours later in irradiated samples than in controls, and there was no significant effect on the maximum labeling index. For EA14 and GM6419 cells, although smaller doses were used because of greater radiosensitivity, a delay of the entry into S phase was again noticeable, but the most significant effect was a reduction in the maximum percentage of active S-phase cells after stimulation, indicating a permanent or long-term arrest in G1. The RBE for the G1 delay was the same for all four cell types, about 2.8, while the RBE for the G1 arrest varied between 3.2 for the most resistant Be11 cells and 1.7 for the most sensitive GM6419 cells. This trend was similar to that observed for the RBE for cell inactivation. If, as described above, the same number of strand breaks per dose is induced by neutrons and by X rays, the signal transduction cascade translates them into a greater G1 delay in the case of higher LET. This appears to be independent of repair capacity, because it is similar in all cell types we investigated. We therefore assume that a higher lesion density or the presence of other types of lesions is important for this relatively early effect. A G1 arrest, however, is more closely related to the later events leading to cell inactivation, where strand break repair does play a major role, influencing X-ray sensitivity more strongly than sensitivity to neutrons because of a lower repairability of lesions induced by higher-LET radiation.  相似文献   

6.
These experiments measured the effect of gamma radiation on the nuclear envelope using doxyl-fatty acid spin-label probes. Nuclei were isolated from cultured MOLT-4 cells, a radiation-sensitive human T-cell lymphocyte. Membrane fluidity was measured from the electron paramagnetic resonance spectra of the probes. MOLT-4 cells were grown under standard conditions, and suspensions were exposed to 60Co gamma radiation at room temperature. The spectra of 5-doxylstearic acid in the nuclei were those of a strongly immobilized label. A difference in the membrane fluidity was detected in a series of experiments comparing labeled irradiated and nonirradiated nuclei. The change in fluidity was measured by comparing the changes in the order parameter, S, of the spin label in irradiated nuclei with those in control nuclei. The change in the S ratio is dependent on radiation dose, increasing with doses up to 15 Gy. The maximum change of the order parameter with time after irradiation occurs 16-20 h after radiation exposure. These observations are correlated with changes in cell viabilities.  相似文献   

7.
There is still controversy over whether the oxygen enhancement ratio (OER) varies as a function of dose and cell cycle phase. In the present study, the OER has been measured as a function of survival level and cell cycle phase using volume flow cell sorting. This method allows both the separation of cells in different stages of the cycle from an asynchronously growing population, and the precise plating of cells for accurate measurements at high survival levels. We have developed a cell suspension gassing and sampling system which maintained an oxygen tension less than 20 ppm throughout a series of sequential radiation doses. For both radiation-resistant cells (CHO-K1) and a radiation-sensitive clone (CHO-xrs6), we could separate relatively pure populations of G1-phase, G1/S-boundary, S-, and G2-phase cells. Each cell line showed a typical age response, with cells at the G1/S-phase boundary being 4 (CHO-K1) to 12 (CHO-xrs6) times more sensitive than cells in the late S phase. For both cell lines, G1-phase cells had an OER of 2.3-2.4, compared to an OER of 2.8-2.9 for S-phase and 2.6-2.7 for G2-phase cells. None of these age fractions showed a dependence of OER on survival level. Asynchronously growing cells or cells at the G1/S-phase boundary had an OER similar to that of G1-phase cells at high survival levels, but the OER increased with decreasing survival level to a value near that of S-phase cells. These results suggest that the decrease in OER at high survival levels for asynchronous cells may be due to differences in the OERs of the inherent cell age subpopulations. For cells in one cell cycle stage, oxygen appears to have a purely dose-modifying effect.  相似文献   

8.
Effect of pre-irradiation administration of different doses of RH-3, the herbal preparation of an Indian medicinal plant Hippophae rhamnoides, 30 min before 10 Gy whole body gamma irradiation was studied. Doses between 25 to 35 mg/kg body wt. were found to render > 80 % survival in mice. In order to investigate whether RH-3 protected against radiation induced genotoxicity, mice were administered different doses of RH-3, 30 min before 2 Gy dose and compared with untreated, RH-3 treated and irradiated controls. The bone marrow cells were collected at different time intervals following various treatments and processed for scoring micronuclei (MN). Administration of RH-3 alone did not enhance the MN frequency as compared to the control, and radiation dose of 2 Gy significantly enhanced the MN frequency (3.1 %, P < 0.01). Pre-irradiation treatment with RH-3, however, reduced the radiation induced MN frequency in a drug dose dependent manner suggesting its radioprotective efficacy. The protective effect of RH-3 on radiation induced perturbations in cell cycle progression was studied flowcytometrically in mouse bone marrow cells. RH-3 treatment (30 mg/kg body wt.) enhanced DNA synthesis (S-phase) in unirradiated controls and also countered radiation induced depression of S-phase to facilitate replenishment of cells lost due to radiation injury.  相似文献   

9.
The goal of this study was to determine the amount of reactive oxygen species (ROS) that arises inside cells irradiated in medium containing blood serum using the 2'7'-dichlorofluorescein (DCF) assay. DCF fluorescence in cells and medium was recorded on an MF44 Perkin Elmer fluorimeter, and fluorescence in cells only was recorded on a Partec flow-through cytometer. Human larynx tumor HEp-2 cells and lympholeukosis P388 cells were irradiated with X rays at a dose rate of 1.12 Gy/min. The factors (temperature, pH, serum concentration) affecting the oxidation of 2'7'-dichlorofluorescin (DCFH) to DCF were studied, and errors in the dichlorofluorescein assay of ROS were minimized. The amount of ROS registered by the DCF assay in cells was found to depend on the concentration of serum in the medium during irradiation. In the presence of 10% serum, radiation had no effect on the amount of detectable ROS. The effect of radiation on the formation of intracellular ROS was almost completely abolished if the irradiated medium was removed immediately after radiation exposure. The increase in the formation of ROS in cells irradiated in medium with a low serum content is due mainly to the radiolytic products of water that arise in medium and oxidize DCFH located in cells.  相似文献   

10.
We have previously described a novel DNA repair response that is induced in cells irradiated with ionizing radiation at the G1/S-phase border and is characterized by the formation of very long repair patches (VLRP) containing at least 150 nucleotides. In the current study, we examined whether there is a requirement for TP53 in this induced repair process. We find that in normal cells, the endogenous levels of TP53 are elevated at the G1/S-phase border, and that these levels are not further increased after irradiation with 5 Gy. In cells expressing the E6 oncoprotein of human papillomavirus, which inactivates TP53 function, there is a greatly accentuated induction of the VLRP that nearly masks the constitutive repair response. Incubation of cells in the presence of cycloheximide, which inhibits the induced repair, reveals the presence of the constitutive repair patches. All cells examined continue to replicate their DNA after exposure to ionizing radiation. In contrast, cells irradiated with UV radiation at the G1/S-phase border show an induction of TP53 protein and halt DNA synthesis, but do not induce the VLRP. Our results show that TP53 is not required for the constitutive or induced repair of DNA damage induced by ionizing radiation. In addition, these results suggest that TP53 may suppress the formation of VLRP and that the progression of cells through S phase after exposure to ionizing radiation signals the induced repair response.  相似文献   

11.
Response of a solid tumor to radiation treatment depends, in part, on the intrinsic radiosensitivity of tumor cells, the proliferation rate of tumor cells between radiation treatments and the hypoxic state of the tumor cells. A successful radiosensitizing agent would target S-phase cells and hypoxia. Recently, we demonstrated the anti-tumor effects of flavopiridol in the GL261 murine glioma model might involve 1) recruitment of tumor cells to S-phase (Newcomb et al., Cell Cycle 2004; 3:230-234) and 2) an anti-angiogenic effect on the tumor vasculature by downregulation of hypoxia-inducible factor -1? (HIF-1?) (Newcomb et al., Neuro-Oncology 2005; 7:225-235). Given that flavopiridol has demonstrated radiosensitizing activity in several murine tumor models, we tested whether it would enhance the response of GL261 tumors to radiation. In the present study, we evaluated the intrinsic radiation sensitivity of the GL261 glioma model using the tumor control/cure dose of radiation assay (TCD50). We found that a single dose of 65 Gy (CI 57.1-73.1) was required to cure 50% of the tumors locally. Using the tumor growth delay assay, fractionated radiation (5 fractions of 5 Gy over 10 days) combined with flavopiridol (5 mg/kg) given three times weekly for 3 cycles produced a significant growth delay. Our results indicate that the GL261 murine glioma model mimics the radioresistance encountered in human gliomas, and thus should prove useful in identifying promising new investigational radiosensitizers for use in the treatment of glioma patients.  相似文献   

12.
Measurement of the radiation sensitivity of chromosomes was used to address the influence of cell cycle distribution and of DNA content and ploidy on radiation responses in seven human squamous cell carcinoma cell lines. The cell lines varied about twofold in DNA content and chromosome number, and the X-ray sensitivities (D0) of the lines ranged from 1.1 to 2.7 Gy. The more resistant cell lines (D0 greater than 1.8 Gy) had faster growth rates and larger proportions of cells in S phase in asynchronous cultures. Aberration frequencies were measured in cells irradiated in G1 and G2 phase. The more resistant lines had fewer induced aberrations in both phases than did sensitive lines, implying that they were more resistant to radiation in both of these cell cycle phases. Therefore, while the larger S-phase population seen in the resistant cell lines probably contributes to the resistant phenotype, it cannot explain all of the intrinsic differences in radiation sensitivity. There was no relationship between DNA content and radiation sensitivity as measured by the cell survival assay or the induction of chromosome aberrations, although cells with larger DNA contents tended to have more chromosome damage per cell at equitoxic doses.  相似文献   

13.
The time of onset and duration of division delay induced by exposure to 250-kvp x-irradiation have been measured in several mammalian cell lines grown in suspension culture. Unique times of action (i.e. interval from irradiation to cessation of division) late in G2 are characteristic for HeLa, L-5178Y, and Chinese hamster cells, and the time of action is independent of dose over the range 25-800 rads. The duration of delay was directly proportional to dose; all irradiated cells divided at least once and maintained their relative positions in the life cycle for periods exceeding one generation time. Neither random nor synchronous cultures exposed at varying times in the life cycle exhibited differences in radiation sensitivity measured either by onset or duration of the delay period. The time of action was experimentally indistinguishable from the point marking completion of protein synthesis essential for division, leading to speculation that division delay involves a translation defect.  相似文献   

14.
In normal tissues, thyroid hormones play a major role in the metabolic activity and oxygen consumption of cells. Because the rate of oxygen consumption is a key factor in the response of tumors to radiation, we hypothesized that thyroid hormones may affect the metabolic activity of tumor cells and hence modulate the response to cytotoxic treatments. We measured the influence of thyroid status on the tumor microenvironment in experimental tumors. Hypothyroidism and hyperthyroidism were generated in mice by chronic treatment with propyl thiouracil and l-thyroxine. Thyroid status significantly modified tumor pO(2) as measured with EPR oximetry. Mechanistically, this was the result of the profound changes in oxygen consumption rates. Thyroid status was associated with a significant change in tumor radiosensitivity since the regrowth delay was increased in hypothyroid mice compared to euthyroid mice, an effect that was abolished when temporarily clamped tumors were irradiated. This study provides unique insights into the impact of modulating tumor oxygen consumption and could have implications in the management of cancer patients with thyroid disorders.  相似文献   

15.
Mouse fibroblast L-929 cells synchonized by mitotic selection were irradiated during the G1-phase of the cell cycle with a dose of 1000 rad. The rat of DNA synthesis was measured by 3H-thymidine incorporation, and the progression of the cells through the cell cycle was determined using a pulse-cytophotometer. Irradiation caused a decrease in the rate of DNA synthesis to half the control value, and an extension of the S-phase to twice its normal duration.  相似文献   

16.
In response to induced DNA damage, proliferating cells arrest in their cell cycle or go into apoptosis. Ionizing radiation is known to induce degeneration of mammalian male germ cells. The effects on cell-cycle progression, however, have not been thoroughly studied due to lack of methods for identifying effects on a particular cell-cycle phase of a specific germ cell type. In this study, we have utilized the technique for isolation of defined segments of seminiferous tubules to examine the cell-cycle progression of irradiated rat mitotic (type B spermatogonia) and meiotic (preleptotene spermatocytes) G1/S cells. Cells irradiated as type B spermatogonia in mitotic S phase showed a small delay in progression through meiosis. Thus, it seems that transient arrest in the progression can occur in the otherwise strictly regulated progression of germ cells in the seminiferous epithelium. Contrary to the arrest observed in type B spermatogonia and in previous studies on somatic cells, X-irradiation did not result in a G1 delay in meiotic cells. This lack of arrest occurred despite the presence of unrepaired DNA damage that was measured when the cells had progressed through the two meiotic divisions.  相似文献   

17.
Flow cytometric analysis of X-ray sensitivity in ataxia telangiectasia   总被引:3,自引:0,他引:3  
Flow cytometric analysis of 5-bromodeoxyuridine (BrdU) incorporation during DNA synthesis was used to characterize the effects of X-rays on cell-cycle kinetics in the DNA-repair deficiency disease ataxia telangiectasia (AT). Cultured fibroblasts from homozygotes (at/at), heterozygotes (at/+) and normal controls (+/+) were either: (1) irradiated, cultured, then pulsed with BrdU and harvested, or (2) pulsed with BrdU, irradiated, cultured and then harvested. Cells were then fixed and stained with both a fluoresceinated monoclonal antibody against BrdU to identify S-phase cells and with propidium diiodide to measure total DNA content. Irradiation of +/+ and at/+ cells induced a similar, transient G2/M arrest detectable within 8 h, which subsequently delayed by 6-8 h the passage of cells into G1 and depleted early S phase. In contrast, at/at cells failed to arrest in G2/M phase and entered the next cell cycle without pausing to repair radiation-induced damage. X-Rays also blocked entry of +/+ G1 cells into S phase, subsequently reducing the total S-phase population. This effect was not observed in at/at cells. These cell-cycle responses to radiation may be of diagnostic use and ultimately may help explain the basic defect in AT.  相似文献   

18.
Skin exposure to ionizing radiation affects the normal wound healing process and greatly impacts the prognosis of affected individuals. We investigated the effect of ionizing radiation on wound healing in a rat model of combined radiation and wound skin injury. Using a soft X-ray beam, a single dose of ionizing radiation (10-40 Gy) was delivered to the skin without significant exposure to internal organs. At 1 h postirradiation, two skin wounds were made on the back of each rat. Control and experimental animals were euthanized at 3, 7, 14, 21 and 30 days postirradiation. The wound areas were measured, and tissue samples were evaluated for laminin 332 and matrix metalloproteinase (MMP) 2 expression. Our results clearly demonstrate that radiation exposure significantly delayed wound healing in a dose-related manner. Evaluation of irradiated and wounded skin showed decreased deposition of laminin 332 protein in the epidermal basement membrane together with an elevated expression of all three laminin 332 genes within 3 days postirradiation. The elevated laminin 332 gene expression was paralleled by an elevated gene and protein expression of MMP2, suggesting that the reduced amount of laminin 332 in irradiated skin is due to an imbalance between laminin 332 secretion and its accelerated processing by elevated tissue metalloproteinases. Western blot analysis of cultured rat keratinocytes showed decreased laminin 332 deposition by irradiated cells, and incubation of irradiated keratinocytes with MMP inhibitor significantly increased the amount of deposited laminin 332. Furthermore, irradiated keratinocytes exhibited a longer time to close an artificial wound, and this delay was partially corrected by seeding keratinocytes on laminin 332-coated plates. These data strongly suggest that laminin 332 deposition is inhibited by ionizing radiation and, in combination with slower keratinocyte migration, can contribute to the delayed wound healing of irradiated skin.  相似文献   

19.
The kinetics of DNA synthesis restoration in cultured HeLa cells and in L-929 mouse fibroblasts irradiated by gamma-rays of 60Co with a dose of 10 Gy was studied. Early after irradiation the rate of DNA synthesis in HeLa cells measured with 3H-thymidine incorporation was seen to decrease. Two hours later the incorporation starts to increase to reach the control level 4 hours after irradiation and then becomes even higher than this level. The distribution of cells among phases of the cell cycle measured with flow cytometry undergoes changes. 4-6 hours after irradiation part of S-phase cells increased contributing presumably to the elevating of 3H-thymidine incorporation observed at this time. The restoration of the incorporation was suppressed by inhibitors of protein and RNA synthesis--cycloheximide and actinomycin D. It is suggested that the processes of restoration of DNA synthesis in irradiated cells can be of inducible nature. In irradiated HeLa and L-929 cells the restoration of DNA synthesis is resistant to novobiocin, an inhibitor of DNA replication.  相似文献   

20.
SYNOPSIS. Stentor polymorphus was irradiated with 60Co gamma rays at 525 rads/minute to examine the effect on survival, cell division, oral membranellar frequency and oxygen uptake. Both survival and cell division were studied on single cells. The LD50 is 285 kilorads but cell division is inhibited below this dose; 110 kilorads doubles the 1st post-irradiation division interval, and a delay of 240 hours occurs at the maximum tolerated dose of 310 kilorads. Conjugating cells are more sensitive, with an LD50 of approximately 40 kilorads.
The frequency of cilia in the membranellar band, measured stroboscopically, is reduced by 30% after 14.5 kilorads, and stopped by higher doses. Recovery has a similar time scale to recovery of fission. A Clarke electrode was used to measure changes in oxygen uptake after irradiation. Depressions of up to 50% were found. Recovery followed a similar pattern to that of ciliary activity and cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号