首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Alternative models for fumarase distribution have been proposed that require more than one translation product. In the current work (i) we show by using sequential Edman degradation and mass spectrometry that fumarase cytosolic and mitochondrial isoenzymes have an identical amino terminus that is formed by cleavage by the mitochondrial processing peptidase, (ii) we have generated fumarase mutants in which the second potential translation initiation codon (Met-24) has been substituted, yet the protein is processed efficiently and retains its ability to be distributed between the cytosol and mitochondria, and (iii) we show that although a signal peptide is required for fumarase targeting to mitochondria the specific fumarase signal peptide and the sequence immediately downstream to the cleavage site are not required for the dual distribution phenomenon. Our results are discussed in light of our model of fumarase targeting and distribution that suggests rapid folding into an import-incompetent state and retrograde movement of the processed protein back to the cytosol through the translocation pore.  相似文献   

2.
Fumarase and aconitase in yeast are dual localized to the cytosol and mitochondria by a similar targeting mechanism. These two tricarboxylic acid cycle enzymes are single translation products that are targeted to and processed by mitochondrial processing peptidase in mitochondria prior to distribution. The mechanism includes reverse translocation of a subset of processed molecules back into the cytosol. Here, we show that either depletion or overexpression of Cit2 (cytosolic citrate synthase) causes the vast majority of fumarase to be fully imported into mitochondria with a tiny amount or no fumarase in the cytosol. Normal dual distribution of fumarase (similar amounts in the cytosol and mitochondria) depends on an enzymatically active Cit2. Glyoxylate shunt deletion mutations ( Δmls1 , Δaco1 and Δicl1 ) exhibit an altered fumarase dual distribution (like in Δcit2 ). Finally, when succinic acid, a product of the glyoxylate shunt, is added to the growth medium, fumarase dual distribution is altered such that there are lower levels of fumarase in the cytosol. This study suggests that the cytosolic localization of a distributed mitochondrial protein is governed by intracellular metabolite cues. Specifically, we suggest that metabolites of the glyoxylate shunt act as 'nanosensors' for fumarase subcellular targeting and distribution. The possible mechanisms involved are discussed.  相似文献   

3.
The majority of mitochondrial proteins can be imported into mitochondria following termination of their translation in the cytosol. Import of fumarase and several other proteins into mitochondria does not appear to occur post-translationally according to standard in vivo and in vitro assays. However, the nature of interaction between the translation and translocation apparatuses during import of these proteins is unknown. Therefore, a major question is whether the nascent chains of these proteins are exposed to the cytosol during import into mitochondria. We asked directly if the presequence of fumarase can be cleaved by externally added mitochondrial processing peptidase (MPP) during import, using an in vitro translation-translocation coupled reaction. The presequence of fumarase was cleaved by externally added MPP during import, indicating a lack of, or a loose physical connection between, the translation and translocation of this protein. Exchanging the authentic presequence of fumarase for that of the more efficient Su9-ATPase presequence reduced the exposure of fumarase precursors to externally added MPP en route to mitochondria. Therefore, exposure to cytosolic MPP is dependent on the presequence and not on the mature part of fumarase. On the other hand, following translation in the absence of mitochondria, the authentic fumarase presequence and that of Su9-ATPase become inaccessible to added MPP when attached to mature fumarase. Thus, folding of the mature portion of fumarase, which conceals the presequence, is the reason for its inability to be imported in classical post-translational assays. Another unique feature of fumarase is its distribution between the mitochondria and the cytosol. We show that in vivo the switch of the authentic presequence with that of Su9-ATPase caused more fumarase molecules to be localized to the mitochondria. A possible mechanism by which the cytosolic exposure, the targeting efficiency, and the subcellular distribution of fumarase are dictated by the presequence is discussed.  相似文献   

4.
Yogev O  Naamati A  Pines O 《The FEBS journal》2011,278(22):4230-4242
The enzyme fumarase is a conserved protein in all organisms with regard to its sequence, structure and function. This enzyme participates in the tricarboxylic acid cycle in mitochondria which is essential for cellular respiration in eukaryotes. However, a common theme conserved from yeast to humans is the existence of a cytosolic form of fumarase; hence this protein is dual localized. We have coined identical (or nearly identical) proteins situated in different subcellular locations 'echoforms' or 'echoproteins'. Fumarase was the first example of a dual localized protein whose mechanism of distribution was found to be based on a single translation product. Consequently, fumarase has become a paradigm for three unique eukaryotic cellular phenomena related to protein dual localization: (a) distribution between mitochondria and the cytoplasm involves reverse translocation; (b) targeting to mitochondria involves translation coupled import; and (c) there are two echoforms possessing distinct functions in the respective subcellular compartments. Here we describe and discuss these fumarase related phenomena and in addition point out approaches for studying dual function of distributed proteins, in particular compartment-specific depletion. In the case of fumarase, the cytoplasmic function was only recently discovered; the enzyme was found to participate in the cellular response to DNA double strand breaks. Strikingly, upon DNA damage the protein is transported from the cytosol to the nucleus, where by virtue of its enzymatic activity it participates in the DNA damage response.  相似文献   

5.
The yeast mitochondrial and cytosolic isoenzymes of fumarase, which are encoded by a single nuclear gene (FUM1), follow a unique mechanism of protein subcellular localization and distribution. Translation of all FUM1 messages initiates only from the 5'-proximal AUG codon and results in a single translation product that contains the targeting sequence located within the first 32 amino acids of the precursor. All fumarase molecules synthesized in the cell are processed by the mitochondrial matrix signal peptidase; nevertheless, most of the enzyme (80 to 90%) ends up in the cytosol. The translocation and processing of fumarase are cotranslational. We suggest that in Saccharomyces cerevisiae, the single type of initial translation product of the FUM1 gene is first partially translocated, and then a subset of these molecules continues to be fully translocated into the organelle, whereas the rest are folded into an import-incompetent state and are released by the retrograde movement of fumarase into the cytosol.  相似文献   

6.
Sequence-inherent targeting information directs polypeptides synthesized in the cytosol to their respective cellular compartment. Some proteins use ambiguous sorting signals or specific folding properties to be dually distributed between the cytosol and mitochondria. A study published in this issue of Molecular Microbiology shows that in the case of fumarase this distribution is controlled by the metabolic state of yeast cells. The metabolite-dependent distribution of fumarase represents an exciting example of regulated protein import into mitochondria that shows that eukaryotes can adapt the intracellular protein distribution to their physiological conditions.  相似文献   

7.
Fumarase represents proteins that cannot be imported into mitochondria after the termination of translation (post-translationally). Utilizing mitochondrial and cytosolic versions of the tobacco etch virus (TEV) protease, we show that mitochondrially targeted fumarase harboring a TEV protease recognition sequence is efficiently cleaved by the mitochondrial but not by the cytosolic TEV protease. Nonetheless, fumarase was readily cleaved by cytosolic TEV when its import into mitochondria was slowed down by either (i) disrupting the activity of the TOM complex, (ii) lowering the growth temperature, or (iii) reducing the inner membrane electrochemical potential. Accessibility of the fumarase nascent chain to TEV protease under such conditions was prevented by low cycloheximide concentrations, which impede translation. In addition, depletion of the ribosome-associated nascent polypeptide-associated complex (NAC) reduced the fumarase rate of translocation into mitochondria and exposed it to TEV cleavage in the cytosol. These results indicate that cytosolic exposure of the fumarase nascent chain depends on both translocation and translation rates, allowing us to discuss the possibility that import of fumarase into mitochondria occurs while the ribosome is still attached to the nascent chain.  相似文献   

8.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

9.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

10.
Intracellular distribution of fumarase in various animals   总被引:2,自引:0,他引:2  
The subcellular distribution of fumarase was investigated in the liver of various animals and in several tissues of the rat. In the rat liver, fumarase was predominantly located in the cytosolic and mitochondrial fractions, but not in the peroxisomal fraction. The amount of fumarase associated with the microsomes was less than 5% of the total enzyme activity. The investigation of the intracellular distribution of hepatic fumarase of the rat, mouse, rabbit, dog, chicken, snake, frog, and carp revealed that the amount of the enzyme located in the cytosol was comparable to that in the mitochondria of all these animals. The subcellular distribution of the enzyme in the kidney, brain, heart, and skeletal muscle of rat, and in hepatoma cells (AH-109A) was also investigated. Among these tissues, the brain was the only exception, having no fumarase activity in the cytosolic fraction, and the other tissues showed a bimodal distribution of fumarase in the cytosol and the mitochondria. The mitochondrial fumarase was predominantly located in the matrix. About 10% of the total fumarase was found in the outer and inner membrane, although it was unclear whether this fumarase was originally located in these fractions. No fumarase activity was detected in the intermembranous space.  相似文献   

11.
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunoflourescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.  相似文献   

12.
There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.  相似文献   

13.
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.  相似文献   

14.
Two different putative precursor polypeptides of rat liver fumarase were synthesized when RNA prepared from rat liver were translated in vitro using the rabbit reticulocyte lysate system. One of these putative precursor polypeptides (P1) was synthesized as a larger molecular mass than the mature subunit of fumarase (45,000 daltons) by about 5,000 daltons and the other (P2) had the same molecular mass as the mature enzyme. When the 35S-labeled cell-free translation products were incubated with rat liver mitochondria at 30 degrees C, P1 and the 35S-labeled mature size fumarase were associated with the mitochondria. Of these, the 35S-labeled mature size fumarase was resistant to externally added protease, but P1 was not, indicating that the 35S-labeled mature size fumarase was located in the mitochondrial matrix. The following observations strongly suggested that the 35S-labeled mature size fumarase in mitochondria was derived from P1, which was energy-dependently imported and concomitantly processed to the mature size. 1) The amount of the 35S-labeled mature size fumarase recovered from the mitochondria increased proportionally to the duration of incubation, while the amount of P1 recovered from the post-mitochondrial and mitochondrial fractions decreased with the duration of the incubation. 2) Only P1 could bind with the mitochondrial outer membrane at 0 degrees C even in the presence of an uncoupler of the oxidative phosphorylation but P2 did not. 3) P1 bound to the mitochondrial outer membrane was imported into the matrix, when the mitochondria binding only P1 at 0 degrees C was reisolated and incubated at 30 degrees C in the presence of an energy-generating system. The specific receptor was involved in the binding of P1 to mitochondria, since a high concentration of NaCl did not interfere with the binding of P1 to the membrane and did not discharge P1 bound onto the membrane. It was shown that P1 formed an aggregate composed of 6 to 8 molecules and P2 was a dimer in the cell-free translation mixture and that P1 and P2 were enzymatically inactive. These results suggest that the precursor for the mitochondrial enzyme has a larger molecular weight than that of the mature enzyme, whereas the precursor for the cytosolic enzyme has the same molecular weight as the mature enzyme.  相似文献   

15.
Kim HY  Gladyshev VN 《Biochemistry》2005,44(22):8059-8067
Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108, 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse MsrA in Saccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments.  相似文献   

16.
17.
In plant mitochondria, some of the tRNAs are encoded by the mitochondrial genome and resemble their prokaryotic counterparts, whereas the remaining tRNAs are encoded by the nuclear genome and imported from the cytosol. Generally, mitochondrial isoacceptor tRNAs all have the same genetic origin. One known exception to this rule is the group of tRNA(Gly) isoacceptors in dicotyledonous plants. A mitochondrion-encoded tRNA(Gly) and at least one nucleus-encoded tRNA(Gly) coexist in the mitochondria of these plants, and both are required to allow translation of all four GGN glycine codons. We have taken advantage of this atypical situation to address the problem of tRNA/aminoacyl-tRNA synthetase coevolution in plants. In this work, we show that two different nucleus-encoded glycyl-tRNA synthetases (GlyRSs) are imported into Arabidopsis thaliana and Phaseolus vulgaris mitochondria. The first one, GlyRS-1, is similar to human or yeast glycyl-tRNA synthetase, whereas the second, GlyRS-2, is similar to Escherichia coli glycyl-tRNA synthetase. Both enzymes are dual targeted, GlyRS-1 to mitochondria and to the cytosol and GlyRS-2 to mitochondria and chloroplasts. Unexpectedly, GlyRS-1 seems to be active in the cytosol but inactive in mitochondrial fractions, whereas GlyRS-2 is likely to glycylate both the organelle-encoded tRNA(Gly) and the imported tRNA(Gly) present in mitochondria.  相似文献   

18.
The tricarboxylic acid cycle enzyme aconitase in yeast is a single translation product, which is dual targeted and distributed between the mitochondria and the cytosol by a unique mechanism involving reverse translocation. There is limited understanding regarding the precise mechanism of reverse translocation across the mitochondrial membranes. Here, we examined the contribution of the mature part of aconitase to its dual targeting. We created a set of aconitase mutants harboring two kinds of alterations: (1) point mutations or very small deletions in conserved sites and (2) systematic large deletions. These mutants were screened for their localization by a α-complementation assay, which revealed that the aconitase fourth domain that is at the C-terminus (amino acids 517-778) is required for aconitase distribution. Moreover, fusion of this C-terminal domain to mitochondria-targeted passenger proteins such as dihydrofolate reductase and orotidine-5′-phosphate decarboxylase, conferred dual localization on them. These results indicate that the aconitase C-terminal domain is both necessary and sufficient for dual targeting, thereby functioning as an “independent signal”. In addition, the same C-terminal domain was shown to be necessary for aconitase efficient posttranslational import into mitochondria.  相似文献   

19.
The distribution of identical enzymatic activities between different subcellular compartments is a fundamental process of living cells. At present, the Saccharomyces cerevisiae aconitase enzyme has been detected only in mitochondria, where it functions in the tricarboxylic acid (TCA) cycle and is considered a mitochondrial matrix marker. We developed two strategies for physical and functional detection of aconitase in the yeast cytosol: 1) we fused the alpha peptide of the beta-galactosidase enzyme to aconitase and observed alpha complementation in the cytosol; and 2) we created an ACO1-URA3 hybrid gene, which allowed isolation of strains in which the hybrid protein is exclusively targeted to mitochondria. These strains display a specific phenotype consistent with glyoxylate shunt elimination. Together, our data indicate that yeast aconitase isoenzymes distribute between two distinct subcellular compartments and participate in two separate metabolic pathways; the glyoxylate shunt in the cytosol and the TCA cycle in mitochondria. We maintain that such dual distribution phenomena have a wider occurrence than recorded currently, the reason being that in certain cases there is a small fraction of one of the isoenzymes, in one of the locations, making its detection very difficult. We term this phenomenon of highly uneven isoenzyme distribution "eclipsed distribution."  相似文献   

20.
The uncoupling protein (UCP) from mammalian brown adipose tissue is an integral component of the mitochondrial inner membrane where it dissipates the proton electrochemical gradient. UCP is transported into mitochondria from the cytosol but lacks a cleavable targeting peptide. We have expressed the rat UCP in Saccharomyces cerevisiae and shown that this protein, which is not normally found in yeast, is targeted to the mitochondria where it disrupts mitochondrial function, probably by uncoupling oxidative phosphorylation. The observed growth defect is dependent upon the level of expression of UCP. When the unmodified UCP cDNA is expressed in yeast under the control of the GAL10 promoter no defect in growth is observed. We have inserted the UCP coding sequence behind the strong phosphoglycerate kinase promoter under the control of the GAL1-10 upstream activation site and introduced a yeast consensus sequence (ATAATG) at the translation start site. We have found that UCP expressed in S. cerevisiae is targeted to mitochondria and that its expression induces a marked growth defect on non-fermentable carbon sources in a manner dependent on induction with galactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号