首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary The -galactosidase gene from Bacillus subtilis KL88 was cloned into Escherichia coli and the gene product characterized for its potential use in the dairy industry. The two recombinant plasmids that we obtanied encoded a -galactosidase with the same catalytic and thermal characteristics as the native -galactosidase from B. subtilis. The recombinant -galactosidases exhibited high activity at low temperature (10°C), with maximum activity at 50°C and an optimum pH of 6.0. Its molecular weight was estimated to be 90 Kd. The restriction maps of the recombinant plasmids were constructed. The -galactosidase gene was located in a 2.3 Kb fragment.  相似文献   

2.
We have used the technique of continuous culture to study the expression of β-galactosidase in Escherichia coli. In these experiments the cultures were grown on carbon-limited media in which half of the available carbon was supplied as glycerol, glucose, or glucose 6-phosphate, and the other half as lactose. Lactose itself provided the sole source of inducer for the lac operon. The steady-state specific activity of the enzyme passed through a maximal value as a function of dilution rate. Moreover, the rate at which activity was maximal (0.40 h?1) and the observed specific activity of the enzyme at a given growth rate were found to be identical in each of the three media tested. This result was unexpected, since the steady-state specific activity can be shown to be equal to the differential rate of enzyme synthesis, and since it is known that glycerol, glucose, and glucose-6-P-cause different degrees of catabolite repression in batch culture. The differential rate of β-galactosidase synthesis was an apparently linear function of the rate of lactose utilization per milligram protein regardless of the composition of the input medium. That is, it is independent of the rate of metabolism of substrates other than lactose which are concurrently being utilized and the enzyme level appears to be matched to the metabolic requirement for it. If this relationship is taken to indicate the existence of a fundamental control mechanism, it may represent a form of attenuation of the rate of β-galactosidase synthesis which is independent of cyclic AMP levels.  相似文献   

3.
Summary A -galactosidase gene from Lactobacillus sake coding for lactose hydrolysis was cloned and expressed in Escherichia coli. Chromosomal DNA from L. sake was partially digested with the restriction enzyme Sau3AI, and the 3–6 Kb fragment was ligated to the cloning vector pSP72 digested with BamHI. One E. coli transformant expressing -galactosidase was isolated on X-gal plates. It contained a plasmid with an insertion of approx. 4 Kb. The restriction map of the recombinant plasmid was constructed. The characteristics of the recombinant -galactosidase were compared with those of the wild type. The optima pH and temperature for both enzymes was 6.5 and 50°C, respectively. Stability of the enzymes at different temperatures and activity on lactose were determined.  相似文献   

4.
1. Repression by glucose of β-galactosidase synthesis is spontaneously reversible in all strains of Escherichia coli examined long before the glucose has all been consumed. The extent of recovery and the time necessary for reversal differ among various strains. Other inducible enzymes show similar effects. 2. This transient effect of glucose repression is observed in constitutive (i) and permease-less (y) cells as well as in the corresponding i+ and y+ strains. 3. Repression is exerted by several rapidly metabolizable substrates (galactose, ribose and ribonucleosides) but not by non-metabolized or poorly metabolized compounds (2-deoxyglucose, 2-deoxyribose, phenyl thio-β-galactoside and 2-deoxyribonucleosides). 4. The transient repression with glucose is observed in inducible cells supplied with a powerful inducer of β-galactosidase synthesis (e.g. isopropyl thio-β-galactoside) but not with a weak inducer (lactose); in the latter instance glucose repression is permanent. Diauxic growth on glucose plus lactose can be abolished by including isopropyl thio-β-galactoside in the medium. 5. In some strains phosphate starvation increases catabolite repression; in others it relieves it. Adenine starvation in an adenine-requiring mutant also relieves catabolite repression by glycerol but not that by glucose. Restoration of phosphate or adenine to cells starved of these nutrients causes a pronounced temporary repression. Alkaline-phosphatase synthesis is not affected by the availability of adenine. 6. During periods of transient repression of induced enzyme synthesis the differential rate of RNA synthesis, measured by labelled uracil incorporation in 2min. pulses, shows a temporary rise. 7. The differential rate of uracil incorporation into RNA falls during exponential growth of batch cultures of E. coli. This is equally true for uracil-requiring and non-requiring strains. The fall in the rate of incorporation has been shown to be due to a real fall in the rate of RNA synthesis. The significance of the changes in the rate of RNA synthesis is discussed. 8. A partial model of catabolite repression is presented with suggestions for determining the chemical identification of the catabolite co-repressor itself.  相似文献   

5.
6.
Summary The gene for -CGTase from an alkalophilic bacterium, Bacillus sp. #1011, was cloned in an Escherichia coli phage D69 and recloned in an E. coli plasmid pBR322 and a B. subtilis plasmid pUB110. An E. coli recombinant plasmid pTUE202 and a B. subtilis plasmid pTUB703 were selected from ten plasmids, because the transformants by each of the two plasmids produced the highest amount of extracellular -CGTase in each strain. The plasmids were stably maintained and expressed in each bacterial strain. A common DNA region of approximately 2.5 kb was defined in the ten plasmids, and the enzymatic activity was lost when a part of the common region was deleted. The major product of hydrolysis from starch by the -CGTases of E. coli [pTUB202] and B. subtilis [pTUB703] was -CD as in the case of the enzyme of the parental Bacillus sp. #1011.Abbreviations -CGTase -cyclodextrin synthetase - -CD -cyclodextrin - -CD -cyclodextrin - -CD -cyclodextrin - [] designates plasmid-carrier state  相似文献   

7.
Summary The recombinant phage G1 has been identified by screening 700 plaques of a Charon 4A library, containing DNA of Bacillus amyloliquefaciens, for phage clones directing the hydrolysis of lichenan in Escherichia coli, as indicated by haloes surrounding plaques on lichenan agar. The gene coding for an endo--1.3–1.4-glucanase was recloned within a 3.6 kb EcoRI fragment into the EcoRI site of plasmid pBR322, in both orientations.The location and extent of the bgl gene on the 3.6 kb Bacillus DNA insert was estimated by insertion mutagenesis with transposon Tn5 and restriction mapping of Tn5 insertions within or near to the bgl gene.The -glucanase synthesized by E. coli harbouring plasmids pEG1 or pEG2 was shown to accumulate mainly in the periplasmic space but -glucanase activities were also detected extracellulary and in the cytoplasm. The molecular weight of the enzyme synthesized in E. coli harbouring pEG1 was estimated by SDS-polyacrylamide gel electrophoresis to be about 24000. It was shown that the level of bgl gene expression in E. coli varies about 10-fold, depending on the orientation of the 3.6 kb DNA-fragment cloned within the EcoRI site of pBR322. After insertion of HindIII-DNA fragments from phage into the HindIII site of the -glucanase-high-expression plasmid pEG1, we obtained clones also showing an approximately 10-fold reduction in -glucanase activites. It was thus concluded that on plasmid pEG1 the leftward acting Apr (PI) promotor of plasmid pBR322 strongly increases the expression in E. coli of the cloned B. amyloliquefaciens bgl gene.Abbreviations Ap ampicillin, Km, kanamycin - kd kilodalton - kb kilobase pairs - moi multiplicity of infection - pfu plaque forming units - SDS sodium dodecylsulphate - Tc tetracycline  相似文献   

8.
Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation.  相似文献   

9.
Four fed-batch control strategies were evaluated to improve the specific lactase activity of Kluyveromyces fragilis. Control strategies tested included DO-stat control, exponential feeding, exponential feeding with manual feedback control and corrected feed-forward control. Each was implemented with standard sensors (i.e., temperature, dissolved oxygen and pH sensors) commonly installed in fermenters. The highest specific activity was obtained using the corrected feed-forward control strategy, a strategy incorporating a novel method for on-line estimation of specific growth rate. The control strategy was able to operate effectively to a final cell density of 69 g dry wt l–1 with a specific lactase activity of 2 U mg–1 cell dry wt.  相似文献   

10.
The kinetic parameters of E.coli -galactosidase were not altered by the addition of 2-propanol or ethyl acetate (1.6% v/v). While ethylene glycol (1.6% v/v) doubled the values of both KM (0.29 mM) and kcat (1393 s–), tetraethyleneglycol-dimethylether (Tetraglyme,1.6% v/v) preserved KM, but decreased kcat. At 50°C all the cosolvents dramatically shortened the enzymatic half life, and so did Tetraglyme and 2-propanol at 28°C. At 28°C, both ethyl acetate and ethylene glycol stabilised the enzyme 9- and 6-fold respectively. This fact, together with the activation effect of ethylene glycol may lead to practical applications. © Rapid Science Ltd. 1998  相似文献   

11.
Kim CS  Ji ES  Oh DK 《Biotechnology letters》2003,25(20):1769-1774
Kluyveromyces lactis -galactosidase gene, LAC4, was expressed in Escherichia coli as a soluble His-tagged recombinant enzyme under the optimized culture conditions. The expressed protein was multimeric with a subunit molecular mass of 118 kDa. The dimeric form of the -galactosidase was the major fraction but had a lower activity than those of the multimeric forms. The purified enzyme required Mn2+ for activity and was inactivated irreversibly by imidazole above 50 mM. The activity was optimal at 37 and 40 °C for o-nitrophenyl--d-galactopyranoside (oNPG) and lactose, respectively. The optimum pH value is 7. The K m and V max values of the purified enzyme for oNPG were 1.5 mM and 560 mol min–1 mg–1, and for lactose 20 mM and 570 mol min–1 mg–1, respectively.  相似文献   

12.
A new enzymatic method for the synthesis of β-galactosides of nucleosides and acyclic nucleoside analogues has been developed, using β-galactosidase from Escherichia coli as a catalyst and lactose as a sugar donor. The method is very rapid, feasible and last but not least inexpensive. Its applicability has been proven for a broad variety of possible substrates with respect to its scaling up for preparative use. Five new compounds from a series of nucleoside and acyclic nucleoside analogues have been prepared on a scale of several hundred milligrams, in all cases revealing very good results of the method concerning the reproducibility of the reaction yields and simplicity of the purification process.  相似文献   

13.
14.
Summary The presence of ethanol (5 % v/v), in nutrient medium, ehanced DNA synthesis per E. coli cell nearly 2.8-fold compared to that in control cells. At this concentration, the derepressed synthesis of -galactosidase per bacterium also increased about 3-fold. We, therefore, propose that the ethanol-mediated gene-amplification proportionately elevated the induced synthesis of -galactosidase.  相似文献   

15.
Bacillus amyloliquefaciens harboring recombinant plasmid pHG5, which encodes B. stearothermophilus β-galactosidase, was cultured in a jar fermentor. By feeding lactose a considerable concentration of the enzyme was produced, but the cells stopped growing at an OD660 of about 30. On the other hand, the microorganism grew to a very high cell concentration with an OD660 of around 110 with glucose as a carbon source, but the enzyme specific activity was a half of the maximum value with lactose. Based on these facts, B. amyloliquefaciens was first grown using glucose, and the carbon source was then switched to lactose to induce β-galactosidase production. By this two-step culture method, both good cell growth and high enzyme productivity were obtained.  相似文献   

16.
Carboxymethylated beta-galactosidase from Escherichia coli was dissociated at 100 degrees C to form carboxymethylated fragments A and B. The mol.wts. of carboxymethylated fragments A and B were determined by gel filtration to be 64300 and 22400 respectively. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of carboxymethylated fragments A and B that had been pretreated with 2-mercaptoethanol and sodium dodecyl sulphate yielded mol.wts. of 64000 and 22100 respectively. Carboxymethylated fragments A and B had arginine as their C-terminal amino acid. When a crude extract of E. coli M15 was filtered through a column of Sepharose 6B, it was found that carboxymethylated fragment B could restore beta-galactosidase activity when added to fractions having mol.wts. estimated to be 123000, 262000 and 506000. These fractions are referred to as ;complementable fractions'. Similarly, it was found that carboxymethylated fragment A could restore enzyme activity to tractions having mol.wts. estimated to be 63000, 253000 and 506000. Estimates of the molecular weights of the beta-galactosidase activity obtained by restoration with carboxymethylated fragments A and B were made by filtering the active enzyme through another column of Sepharose 6B. The enzyme obtained by complementation with carboxymethylated fragment B, i.e. the complemented enzyme, had mol.wt. 525000, and that obtained with carboxymethylated fragment A had mol.wts. of 525000, 646000 and 2000000. The latter finding suggests that multiple forms of complemented beta-galactosidase can exist.  相似文献   

17.
Summary -Isopropylmalate (IPM) dehydrogenase gene of Citrobacter freundii was cloned in both Escherichia coli and Bacillus subtilis. Plasmid pCBL 1 containing C. freundii -IPM dehydrogenase gene was isolated using E. coli (leuB) as a host, pBR 322 as a vector and Hind III as an enzyme. The molecular weight (mol.wt.) of pCBL 1 was 7.7 megadalton (Md) and the plasmid was restricted at two sites by Hind III or Sal I, at three sites by BamH I and at four sites by Pst I. The second hybrid plasmid pCBL 2 containing -IPM dehydrogenase gene was reconstructed from 2.1 Md Pst I fragment of pCBL 1 and pBR 322. -IPM dehydrogenase activities of E. coli transformants with pCBL 1 or pCBL 2 were 2–7-fold higher than those of the present strains. The -IPM dehydrogenase gene was transferred from pBR 322 to pLS 353, a shuttle vector between E. coli and B. subtilis. The third plasmid, pCBL 3 (mol.wt. 5.6Md), was cloned in B. subtilis (leuC) and expressed the enzyme activity which complemented the Leucharacter. The enzyme activities of B. subtilis transformants with pCBL 3 were about 5-fold higher than those of present strains. Thus, the C. freundii gene was effectively expressed in both E. coli and B. subtilis.  相似文献   

18.
Bifidobacterium infantis HL96 produces three -galactosidases (-gal I, II and III). A genomic bank of B. infantis was constructed in E. coli by using pBR322 as a cloning vector. Two E. coli transformants, BIG1 and BIG4, possessing -galactosidase activity, were selected from X-gal plates. They contained two different recombinant plasmids with insert DNA fragments of approx. 4.6 and 4.4 kb, respectively. The restriction maps of pBIG1 and pBIG4 were constructed. -Galactosidases from crude cell-free extracts of B. infantis and of two E. coli recombinants were analyzed by native PAGE and characterized by activity staining. pBIG1 and pBIG4 were shown to carry the genes for -gal I and -gal III, respectively. Optimal pH and temperature for hydrolytic activity of the native enzyme were 7.5 and 40°C, while those for recombinant BIG1 and BIG4 were 7.5, 50°C and 8.0, 40°C, respectively. © Rapid Science Ltd. 1998  相似文献   

19.
20.
Cultivation conditions for the extracellular production of a hybrid β-glucanase from Bacillus were established by using Escherichiacoli JM109 carrying the plasmid pLF3. This plasmid contained a novel secretion system consisting of the kil gene (killing protein) of plasmid ColE1 under the stationary-phase promoter of either the fic or the bolA gene, an omega interposon (Prentki and Krisch 1984) located upstream of the promoters and a hybrid β-glucanase gene of Bacillus. When controlled by the fic promoter, the kil gene led to a higher total production of β-glucanase and a higher protein secretion than when it was under control of the bolA promoter. When the effect of different distances between the stationary-phase promoters and the kil gene was investigated, a shorter distance was generally found to result in a higher secretion. With a complex growth medium, the kinetics of extracellular production of the enzyme depended on several operating variables, such as the salt concentration (NaCl) and the oxygen supply, which were varied by changing the culture volume and the shaking speed. In defined media the secretion of β-glucanase into the medium was increased significantly by the addition of glycerol as a carbon source and by prolonged cultivation. The strain with the highest production and secretion yield of β-glucanase [E. coli JM109(pLF3)] was tested on the fermenter scale. Received: 1 July 1996 / Received revision: 23 September 1996 / Accepted: 29 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号