首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several reports have shown a fast and efficient translocation of TAT-modified lipoplexes and particles into the cell cytoplasm. However, neither the uptake mechanism nor the biological effect of TAT-modified lipoplexes has been studied in detail. In this report we show that the increase in gene transfer of TAT-modified lipoplexes depends on the amount of cationic lipid in the lipoplexes and on the way TAT was coupled to the lipoplexes. We demonstrate that the cellular uptake of both TAT-modified and unmodified lipoplexes is very fast and, in contrast to previous publications, temperature-dependent. Additionally, after internalization TAT-modified as well as unmodified lipoplexes end up in lysosomal vesicles, indicating the involvement of clathrin-mediated endocytosis. Furthermore, chlorpromazine, a specific inhibitor of clathrin-dependent endocytosis, strongly inhibits the cellular uptake and biological activity of both the TAT-modified and unmodified lipoplexes. We also found that the uptake and biological activity of these lipoplexes are diminished when cholesterol in the cell membrane was bound by filipin, an inhibitor of the lipid-raft mediated pathway. Considering these data, we conclude that TAT-modified and unmodified lipoplexes are mainly internalized via a cholesterol-dependent clathrin-mediated pathway.  相似文献   

2.
In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.

The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.  相似文献   

3.
In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.  相似文献   

4.
Influenza virus has been described to enter host cells via clathrin-mediated endocytosis. However, it has also been suggested that other endocytic routes may provide additional entry pathways. Here we show that influenza virus may enter and infect HeLa cells that are unable to take up ligands by clathrin-mediated endocytosis. By overexpressing a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis, we demonstrate that while transferrin uptake and Semliki Forest virus infection were prevented, influenza virus could enter and infect cells expressing Eps15Delta95/295. This finding is supported by the successful infection of cells with influenza virus in the presence of chemical treatments that block endocytosis, namely, chlorpromazine and potassium depletion. We show also that influenza virus may infect cells incapable of uptake by caveolae. Treatment with the inhibitors nystatin, methyl-beta-cyclodextrin, and genistein, as well as transfection of cells with dominant-negative caveolin-1, had no effect on influenza virus infection. By combining inhibitory methods to block both clathrin-mediated endocytosis and uptake by caveolae in the same cell, we demonstrate that influenza virus may infect cells by an additional non-clathrin-dependent, non-caveola-dependent endocytic pathway. We believe this to be the first conclusive analysis of virus entry via such a non-clathrin-dependent pathway, in addition to the traditional clathrin-dependent route.  相似文献   

5.
Synthetic amphiphiles are widely used as a carrier system. However, to match transfection efficiencies as obtained for viral vectors, further insight is required into the properties of lipoplexes that dictate transfection efficiency, including the mechanism of delivery. Although endocytosis is often referred to as the pathway of lipoplex entry and transfection, its precise nature has been poorly defined. Here, we demonstrate that lipoplex-mediated transfection is inhibited by more than 80%, when plasma membrane cholesterol is depleted with methyl-beta-cyclodextrin. Cholesterol replenishment restores the transfection capacity. Investigation of the cellular distribution of lipoplexes after cholesterol depletion revealed an exclusive inhibition of internalization, whereas cell-association remained unaffected. These data strongly support the notion that complex internalization, rather than the direct translocation of plasmid across the plasma membrane, is a prerequisite for accomplishing effective lipoplex-mediated transfection. We demonstrate that internalized lipoplexes colocalize with transferrin in early endocytic compartments and that lipoplex internalization is inhibited in potassium-depleted cells and in cells overexpressing dominant negative Eps15 mutants. In conjunction with the notion that caveolae-mediated internalization can be excluded, we conclude that efficient lipoplex-mediated transfection requires complex internalization via the cholesterol-dependent clathrin-mediated pathway of endocytosis.  相似文献   

6.
We present the mechanism for the cellular uptake of layered double hydroxide (LDH) nanoparticles that are internalized into MNNG/HOS cells principally via clathrin-mediated endocytosis. The intracellular LDHs are highly colocalized with not only typical endocytic proteins, such as clathrin heavy chain, dynamin, and eps15, but also transferrin, a marker of the clathrin-mediated process, suggesting their specific internalization pathway. LDHs loaded with an anticancer drug (MTX-LDH) were also prepared to confirm the efficacy of LDHs as drug delivery systems. The cellular uptake of MTX was higher in MTX-LDH-treated cells than in MTX-treated cells, giving a lower IC50 value for MTX-LDH than for MTX only. The inhibition of the cell cycle was greater for MTX-LDH than for MTX only. This result clearly shows that the internalization of LDH nanoparticles via clathrin-mediated endocytosis may allow the efficient delivery of MTX-LDH in cells and thus enhance drug efficacy.  相似文献   

7.
Endocytosis – the uptake of extracellular ligands, soluble molecules, protein and lipids from the extracellular surface – is a vital process, comprising multiple mechanisms, including phagocytosis, macropinocytosis, clathrin-dependent and clathrin-independent uptake such as caveolae-mediated and non-caveolar raft-dependent endocytosis. The best-studied endocytotic pathway for internalizing both bulk membrane and specific proteins is the clathrin-mediated endocytosis. Although many papers were published about the caveolar endocytosis, it is still not known whether it represents an alternative pathway with distinct cellular compartments to avoid lysosomal degradation or ligands taken up by caveolae can also be targeted to late endosomes/lysosomes. In this paper, we summarize data available about caveolar endocytosis. We are especially focussing on the intracellular route of caveolae and providing data supporting that caveolar endocytosis can join to the classical endocytotic pathway.  相似文献   

8.

Background

Formulation of DNA/cationic lipid complexes (lipoplexes) designed for nucleic acid delivery mostly results in positively charged particles which are thought to enter cells by endocytosis. We recently developed a lipoplex formulation called Neutraplex that allows preparation of both cationic and anionic stable complexes with similar lipid content and ultrastructure.

Methodology/Principal Findings

To assess whether the global net charge could influence cell uptake and activity of the transported oligonucleotides (ON), we prepared lipoplexes with positive and negative charges and compared: (i) their physicochemical properties by zeta potential analysis and dynamic light scattering, (ii) their cell uptake by fluorescence microscopy and flow cytometry, and (iii) the biological activity of the transported ON using a splicing correction assay. We show that positively or negatively charged lipoplexes enter cells cells using both temperature-dependent and -independent uptake mechanisms. Specifically, positively charged lipoplexes predominantly use a temperature-dependent transport when cells are incubated OptiMEM medium. Anionic lipoplexes favour an energy-independent transport and show higher ON activity than cationic lipoplexes in presence of serum. However, lipoplexes with high positive global net charge and OptiMEM medium give the highest uptake and ON activity levels.

Conclusions

These findings suggest that, in addition to endocytosis, lipoplexes may enter cell via a temperature-independent mechanism, which could be mediated by lipid mixing. Such characteristics might arise from the specific lipoplex ultrastructure and should be taken into consideration when developing lipoplexes designed for in vivo or ex vivo nucleic acid transfer.  相似文献   

9.
We investigated if phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2) hydrolysis by phospholipase C activation through cell surface receptors would interfere with clathrin-mediated endocytosis as recruitment of clathrin assembly proteins is PtdIns(4,5)P2-dependent. In the WKPT renal epithelial cell line, endocytosed insulin and beta2-glycoprotein I (beta2gpI) were observed in separate compartments, although endocytosis of both ligands was clathrin-dependent as demonstrated by expression of the clathrin-binding C-terminal domain of AP180 (AP180-C). The two uptake mechanisms were different as only insulin uptake was reduced when the mu2-subunit of the adaptor complex AP-2 was silenced by RNA interference. ATP receptors are expressed at the apical surface of renal cells and, thus, we examined the effect of extracellular ATP on insulin and beta2gpI uptake. ATP stimulated phospholipase C activity, and also suppressed uptake of insulin, but not beta2gpI. This effect was reversed by the PLC inhibitor U-73122. In polarized cell cultures, insulin uptake was apical, whereas beta2gpI uptake was through the basolateral membrane, thus providing an explanation for selective inhibition of insulin endocytosis by ATP. Taken together, these results demonstrate that stimulation of apical G-protein-coupled P2Y receptors, which are coupled to phospholipase C activation diminishes clathrin-mediated endocytosis without interfering with basolateral endocytic mechanisms.  相似文献   

10.
Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections in infants and the elderly. Like many other pH-independent enveloped viruses, RSV is thought to enter at the cell surface, independently of common endocytic pathways. We have used a targeted small interfering RNA (siRNA) library to identify key cellular genes involved in cytoskeletal dynamics and endosome trafficking that are important for RSV infection. Surprisingly, RSV infection was potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis, including clathrin light chain. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. We conclude that, while RSV may be competent to enter at the cell surface, clathrin function and endocytosis are a necessary and important part of a productive RSV infection, even though infection is strictly independent of pH. These findings raise the possibility that other pH-independent viruses may share a similar dependence on endocytosis for infection and provide a new potential avenue for treatment of infection.  相似文献   

11.
12.
Recent studies show that Eph receptors act mainly through the regulation of actin reorganization. Here, we show a novel mode of action for EphB receptors. We identify synaptojanin 1 - a phosphatidylinositol 5'-phosphatase that is involved in clathrin-mediated endocytosis - as a physiological substrate for EphB2. EphB2 causes tyrosine phosphorylation in the proline-rich domain of synaptojanin 1, and inhibits both the interaction with endophilin and the 5'-phosphatase activity of synaptojanin 1. Treatment with the EphB ligand, ephrinB2, elevates the cellular level of phosphatidylinositol 4,5-bisphosphate and promotes transferrin uptake. A kinase inactive mutant of EphB2 and a phosphorylation site mutant of synaptojanin 1 both neutralize the increase of transferrin uptake after ephrinB2 treatment. These mutants also inhibit AMPA glutamate receptor endocytosis in hippocampal neurons. Interestingly, incorporated transferrin does not reach endosomes, suggesting dual effects of EphB signalling on the early and late phases of clathrin-mediated endocytosis. Our results indicate that ephrinB-EphB signalling regulates clathrin-mediated endocytosis in various cellular contexts by influencing protein interactions and phosphoinositide turnover through tyrosine phosphorylation of synaptojanin 1.  相似文献   

13.
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.  相似文献   

14.
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.  相似文献   

15.
The involvement of the clathrin-mediated endocytic internalization route in the uptake of cholera toxin (CT) was investigated using different cell lines, including the human intestinal Caco-2 and T84 cell lines, green monkey Vero cells, SH-SY5Y neuroblastoma cells and Madin-Darby canine kidney cells. Suppression of the clathrin-mediated endocytic pathway by classical biochemical procedures, like intracellular acidification and potassium depletion, inhibited cholera toxin uptake by up to about 50% as well as its ability to raise intracellular levels of cAMP. Also prior exposure of these cell types to the cationic amphiphilic drug chlorpromazine reduced the functional uptake of cholera toxin, even to a greater extent. These effects were dose- and cell type-dependent, suggesting an involvement of clathrin-mediated endocytosis in the functional uptake of cholera toxin. For a more straightforward approach to study the role of the clathrin-mediated uptake in the internalization of cholera toxin, a Caco-2(eps-) cell line was exploited. These Caco-2(eps-) cells constitutively suppress the expression of epsin, an essential accessory protein of clathrin-mediated endocytosis, thereby selectively blocking this internalization route. CT uptake was found to be reduced by over 60% in Caco-2(eps-) paralleled by a diminished ability of CT to raise the level of cAMP. The data presented suggest that the clathrin-mediated uptake route fulfils an important role in the functional internalization of cholera toxin in several cell types.  相似文献   

16.
Endocytosis mediates the uptake of extracellular proteins, micronutrients and transmembrane cell surface proteins. Importantly, many viruses, toxins and bacteria hijack endocytosis to infect cells. The canonical pathway is clathrin-mediated endocytosis (CME) and is active in all eukaryotic cells to support critical house-keeping functions. Unconventional mechanisms of endocytosis exit in parallel of CME, to internalize specific cargoes and support various cellular functions. These clathrin-independent endocytic (CIE) routes use three distinct mechanisms: acute signaling-induced membrane remodeling drives macropinocytosis, activity-dependent bulk endocytosis (ADBE), massive endocytosis (MEND) and EGFR non-clathrin endocytosis (EGFR-NCE). Cargo capture and local membrane deformation by cytosolic proteins is used by fast endophilin-mediated endocytosis (FEME), IL-2Rβ endocytosis and ultrafast endocytosis at synapses. Finally, the formation of endocytic pits by clustering of extracellular lipids or cargoes according to the Glycolipid-Lectin (GL-Lect) hypothesis mediates the uptake of SV40 virus, Shiga and cholera toxins, and galectin-clustered receptors by the CLIC/GEEC and the endophilin-A3-mediated CIE.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) signals through three highly conserved cell surface receptors, the type III TGF-beta receptor (T beta RIII), the type II TGF-beta receptor (T beta RII), and the type I TGF-beta receptor (T beta RI) to regulate diverse cellular processes including cell proliferation, differentiation, migration, and apoptosis. Although T beta RI and T beta RII undergo ligand-independent endocytosis by both clathrin-mediated endocytosis, resulting in enhanced signaling, and clathrin-independent endocytosis, resulting in receptor degradation, the mechanism and function of T beta RIII endocytosis is poorly understood. T beta RIII is a heparan sulfate proteoglycan with a short cytoplasmic tail that functions as a TGF-beta superfamily co-receptor, contributing to TGF-beta signaling through mechanisms yet to be fully defined. We have reported previously that T beta RIII endocytosis, mediated by a novel interaction with beta arrestin-2, results in decreased TGF-beta signaling. Here we demonstrate that T beta RIII undergoes endocytosis in a ligand and glycosaminoglycan modification-independent and cytoplasmic domain-dependent manner, with the interaction of Thr-841 in the cytoplasmic domain of T beta RIII with beta-arrestin2 enhancing T beta RIII endocytosis. T beta RIII undergoes both clathrin-mediated and clathrin-independent endocytosis. Importantly, inhibition of the clathrin-independent, lipid raft pathway, but not of the clathrin-dependent pathway, results in decreased TGF-beta1 induced Smad2 and p38 phosphorylation, supporting a specific role for clathrin-independent endocytosis of T beta RIII in regulating both Smad-dependent and Smad-independent TGF-beta signaling.  相似文献   

18.
Lactoferrin (Lf) is a major iron-binding and multi-functional protein in exocrine fluids such as breast milk and mucosal secretions. The functions of Lf appear dependent upon the iron saturation of the Lf protein and are postulated to be mediated through Lf internalization by a Lf receptor (LfR). However, mechanisms by which LfR mediates Lf internalization in enterocytes are unknown. We now demonstrate that a LfR previously cloned from the small intestine mediates Lf endocytosis in a human enterocyte model (Caco-2 cells). LfR was detected at the plasma membrane by cell surface biotinylation; both apo-Lf and holo-Lf uptake were significantly inhibited in cells transfected with LfR siRNA. Treatments of hypertonic sucrose and clathrin siRNA and co-immunoprecipitation of LfR with clathrin adaptor AP2 indicate that LfR regulates Lf endocytosis via clathrin-mediated endocytosis. Although both iron-free Lf (apo-Lf) and iron-saturated Lf (holo-Lf) enter Caco-2 cells via a similar mechanism and no significant differences were observed in the binding and uptake of apo- and holo-Lf in Caco-2 cells, apo-Lf but not holo-Lf stimulates proliferation of Caco-2 cells. Interestingly, apo-Lf stimulated extracellular signal-regulated mitogen-activated protein kinase (ERK) cascade to a significantly greater extent than holo-Lf and the apo-Lf induced proliferation was significantly inhibited by an ERK cascade inhibitor (U0126) and clathrin siRNA. Taken together, our data suggest that LfR is a major pathway through which Lf is taken up by enterocytes, which occurs independently of iron saturation through clathrin-mediated endocytosis. The differential effects of apo- and holo-Lf are not due to differences in cellular internalization mechanisms.  相似文献   

19.
HIV-1 is an enveloped virus that enters target cells by fusion either directly at the plasma membrane or at the endosomal membrane. The latter mechanism follows a rapid engulfment of HIV-1 after its receptor engagement at the cell surface, and its scale depends on cellular endocytosis/degradation rates and virus fusion kinetics. HIV-1 has recently been shown to exploit a novel Pak1-dependent macropinocytosis mechanism as a way to productively infect macrophages. However, macrophages are highly heterogeneous cells that can adapt functionally to their changing environment, and their endosomal/lysosomal pathway is highly regulated upon cell activation. These changes might impact the ability of HIV-1 to exploit endocytosis as a way to productively infect macrophages. In this study, we compared HIV-1 endocytosis/degradation rates in nonactivated, M1-activated, and M2a-activated monocyte-derived macrophages (MDMs). We found that the rate of HIV-1 endocytosis was increased in M1-activated but decreased in M2a-activated MDMs. However, both M1 and M2a activations of MDMs led specifically to a greater clathrin-mediated endocytosis of HIV-1, which was independent of CD4 and CCR5 binding. Furthermore, clathrin-mediated endocytosis is unlikely to result in productive HIV-1 infection, given that it leads to increased viral degradation. Therefore, we suggest that viral fusion following endocytosis is restricted in activated macrophages.  相似文献   

20.
Most viruses enter cells via receptor-mediated endocytosis. However, the entry mechanisms used by many of them remain unclear. Also largely unknown is the way in which viruses are targeted to cellular endocytic machinery. We have studied the entry mechanisms of influenza viruses by tracking the interaction of single viruses with cellular endocytic structures in real time using fluorescence microscopy. Our results show that influenza can exploit clathrin-mediated and clathrin- and caveolin-independent endocytic pathways in parallel, both pathways leading to viral fusion with similar efficiency. Remarkably, viruses taking the clathrin-mediated pathway enter cells via the de novo formation of clathrin-coated pits (CCPs) at viral-binding sites. CCP formation at these sites is much faster than elsewhere on the cell surface, suggesting a virus-induced CCP formation mechanism that may be commonly exploited by many other types of viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号