首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last few decades have seen a steady increase in the global production and utilisation of the alkenylbenzene, styrene. The compound is of major importance in the petrochemical and polymer-processing industries, which can contribute to the pollution of natural resources via the release of styrene-contaminated effluents and off-gases. This is a cause for some concern as human over-exposure to styrene, and/or its early catabolic intermediates, can have a range of destructive health effects. These features have prompted researchers to investigate routes of styrene degradation in microorganisms, given the potential application of these organisms in bioremediation/biodegradation strategies. This review aims to examine the recent advances which have been made in elucidating the underlying biochemistry, genetics and physiology of microbial styrene catabolism, identifying areas of interest for the future and highlighting the potential industrial importance of individual catabolic pathway enzymes.  相似文献   

2.
The respiratory chain of Escherichia coli contains three different cytochrome oxidases. Whereas the cytochrome bo oxidase and the cytochrome bd-I oxidase are well characterized and have been shown to contribute to proton translocation, physiological data suggested a nonelectrogenic functioning of the cytochrome bd-II oxidase. Recently, however, this view was challenged by an in vitro biochemical analysis that showed that the activity of cytochrome bd-II oxidase does contribute to proton translocation with an H(+)/e(-) stoichiometry of 1. Here, we propose that this apparent discrepancy is due to the activities of two alternative catabolic pathways: the pyruvate oxidase pathway for acetate production and a pathway with methylglyoxal as an intermediate for the production of lactate. The ATP yields of these pathways are lower than those of the pathways that have so far always been assumed to catalyze the main catabolic flux under energy-limited growth conditions (i.e., pyruvate dehydrogenase and lactate dehydrogenase). Inclusion of these alternative pathways in the flux analysis of growing E. coli strains for the calculation of the catabolic ATP synthesis rate indicates an electrogenic function of the cytochrome bd-II oxidase, compatible with an H(+)/e(-) ratio of 1. This analysis shows for the first time the extent of bypassing of substrate-level phosphorylation in E. coli under energy-limited growth conditions.  相似文献   

3.
The term catabolon was introduced to define a complex functional unit integrated by different catabolic pathways, which are, or could be, co-ordinately regulated, and that catalyses the transformation of structurally related compounds into a common catabolite. The phenylacetyl-CoA catabolon encompasses all the routes involved in the transformation of styrene, 2-phenylethylamine, trans-styrylacetic acid, phenylacetaldehyde, phenylacetic acid, phenylacetyl amides, phenylacetyl esters and n-phenylalkanoic acids containing an even number of carbon atoms, into phenylacetyl-CoA. This common intermediate is subsequently catabolized through a route of convergence, the phenylacetyl-CoA catabolon core, into general metabolites. The genetic organization of this central route, the biochemical significance of the whole functional unit and its broad biotechnological applications are discussed.  相似文献   

4.
5.
Molecular mechanisms of genetic adaptation to xenobiotic compounds.   总被引:55,自引:0,他引:55       下载免费PDF全文
Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed.  相似文献   

6.
Significant selective enrichments of mutants defective in catabolic pathways can be achieved by exposure of pseudomonad cells to halogenated analogs of growth substrates. Between 3 and 95% of viable clones rescued from such enrichments have been defective in specific catabolic pathways. This has been demonstrated for eight different catabolic pathways for aromatic compounds in pseudomonads, in which the genes are located on plasmids or on the chromosome. The plasmid-encoded pathways studied include those for the catabolism of p-cymene (CYM), m- and p-xylenes (TOL), naphthalene (NAH), salicylate (SAL), and 4-methylphthalate (MOP), and the chromosome-encoded pathways include those for p-hydroxybenzoate, monohydric phenols, and p-anisate utilization. The recalcitrance of halogenated compounds may, in part, be explained by these observations, which introduce an as yet not widely recognized factor in assessment of biodegradability of halogenated compounds and their effects on the transformation of the natural substrates.  相似文献   

7.
8.
9.
The relevance of the β-proteobacterial Burkholderiales order in the degradation of a vast array of aromatic compounds, including several priority pollutants, has been largely assumed. In this review, the presence and organization of genes encoding oxygenases involved in aromatics biodegradation in 80 Burkholderiales genomes is analysed. This genomic analysis underscores the impressive catabolic potential of this bacterial lineage, comprising nearly all of the central ring-cleavage pathways reported so far in bacteria and most of the peripheral pathways involved in channelling of a broad diversity of aromatic compounds. The more widespread pathways in Burkholderiales include protocatechuate ortho ring-cleavage, catechol ortho ring-cleavage, homogentisate ring-cleavage and phenylacetyl-CoA ring-cleavage pathways found in at least 60% of genomes analysed. In general, a genus-specific pattern of positional ordering of biodegradative genes is observed in the catabolic clusters of these pathways indicating recent events in its evolutionary history. In addition, a significant bias towards secondary chromosomes, now termed chromids, is observed in the distribution of catabolic genes across multipartite genomes, which is consistent with a genus-specific character. Strains isolated from environmental sources such as soil, rhizosphere, sediment or sludge show a higher content of catabolic genes in their genomes compared with strains isolated from human, animal or plant hosts, but no significant difference is found among Alcaligenaceae, Burkholderiaceae and Comamonadaceae families, indicating that habitat is more of a determinant than phylogenetic origin in shaping aromatic catabolic versatility.  相似文献   

10.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   

11.
Pseudomonas putida CA-3 is capable of accumulating medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when growing on the toxic pollutant styrene as the sole source of carbon and energy. In this study, we report on the molecular characterization of the metabolic pathways involved in this novel bioconversion. With a mini-Tn5 random mutagenesis approach, acetyl-coenzyme A (CoA) was identified as the end product of styrene metabolism in P. putida CA-3. Amplified flanking-region PCR was used to clone functionally expressed phenylacetyl-CoA catabolon genes upstream from the sty operon in P. putida CA-3, previously reported to generate acetyl-CoA moieties from the styrene catabolic intermediate, phenylacetyl-CoA. However, the essential involvement of a (non-phenylacetyl-CoA) catabolon-encoded 3-hydroxyacyl-CoA dehydrogenase is also reported. The link between de novo fatty acid synthesis and PHA monomer accumulation was investigated, and a functionally expressed 3-hydroxyacyl-acyl carrier protein-CoA transacylase (phaG) gene in P. putida CA-3 was identified. The deduced PhaG amino acid sequence shared >99% identity with a transacylase from P. putida KT2440, involved in 3-hydroxyacyl-CoA MCL-PHA monomer sequestration from de novo fatty acid synthesis under inorganic nutrient-limited conditions. Similarly, with P. putida CA-3, maximal phaG expression was observed only under nitrogen limitation, with concomitant PHA accumulation. Thus, beta-oxidation and fatty acid de novo synthesis appear to converge in the generation of MCL-PHA monomers from styrene in P. putida CA-3. Cloning and functional characterization of the pha locus, responsible for PHA polymerization/depolymerization is also reported and the significance and future prospects of this novel bioconversion are discussed.  相似文献   

12.
Pseudomonas aeruginosa is able to utilize leucine/isovalerate and acyclic terpenes as sole carbon sources. Key enzymes which play an important role in these catabolic pathways are 3-hydroxy-3-methylglutaryl-coenzyme A (CoA) lyase (EC 4.1.3.4; HMG-CoA lyase) and the 3-hydroxy-3-isohexenylglutaryl-CoA lyase (EC 4.1.2.26; HIHG-CoA lyase), respectively. HMG-CoA lyase is encoded by the liuE gene while the gene for HIHG-CoA lyase remains unidentified. A mutant in the liuE gene was unable to utilize both leucine/isovalerate and acyclic terpenes indicates an involvement of liuE in both catabolic pathways (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117–123). The LiuE protein was purified as a His-tagged recombinant protein and in addition to show HMG-CoA lyase activity (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117–123), also displays HIHG-CoA lyase activity, indicating a bifunctional role in both the leucine/isovalerate and acyclic terpenes catabolic pathways.  相似文献   

13.
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.  相似文献   

14.
Catabolic transposons   总被引:25,自引:0,他引:25  
The structure and function of transposable elements that code for catabolic pathways involved in the biodegradation of organic compounds are reviewed. Seven of these catabolic transposons have structural features that place them in the Class I (composite) or Class II (Tn3-family) bacterial elements. One is a conjugative transposon. Another three have been found to have properties of transposable elements but have not been characterized sufficiently to assign to a known class. Structural features of the toluene (Tn4651/Tn4653) and naphthalene (Tn4655) elements that illustrate the enormous potential for acquisition, deletion and rearrangement of DNA within catabolic transposons are discussed. The recently characterized chlorobenzoate (Tn5271) and chlorobenzene (Tn5280) catabolic transposons encode different aromatic ring dioxygenases, however they both illustrate the constraints that must be overcome when recipients of catabolic transposons assemble and regulate complete metabolic pathways for environmental pollutants. The structures of the chlorobenzoate catabolic transposon Tn5271 and the related haloacetate dehalogenase catabolic element of plasmid pUO1 are compared and a hypothesis for their formation is discussed. The structures and activities of catabolic transposons of unknown class coding for the catabolism of halogenated alkanoic acids (DEH) and chlorobiphenyl (Tn4371) are also reviewed.  相似文献   

15.
16.
Among abiotic molecules available in primitive environments, free amino acids are good candidates as the first source of energy and molecules for early protocells. Amino acid catabolic pathways are likely to be one of the very first metabolic pathways of life. Among them, which ones were the first to emerge? A cladistic analysis of catabolic pathways of the sixteen aliphatic amino acids and two portions of the Krebs cycle is performed using four criteria of homology. The cladogram shows that the earliest pathways to emerge are not portions of the Krebs cycle but catabolisms of aspartate, asparagine, glutamate, glutamine, proline, arginine. Earliest enzymatic catabolic functions were deaminations and transaminations. Later on appeared enzymatic decarboxylations. The consensus tree allows to propose four time spans for catabolism development and corroborates the views of Cordón in 1990 about the evolution of catabolism.  相似文献   

17.
Sugar phosphorylation is an indispensable committed step in a large variety of sugar catabolic pathways, which are major suppliers of carbon and energy in heterotrophic species. Specialized sugar kinases that are indispensable for most of these pathways can be utilized as signature enzymes for the reconstruction of carbohydrate utilization machinery from microbial genomic and metagenomic data. Sugar kinases occur in several structurally distinct families with various partially overlapping as well as yet unknown substrate specificities that often cannot be accurately assigned by homology-based techniques. A subsystems-based metabolic reconstruction combined with the analysis of genome context and followed by experimental testing of predicted gene functions is a powerful approach of functional gene annotation. Here we applied this integrated approach for functional mapping of all sugar kinases constituting an extensive and diverse sugar kinome in the thermophilic bacterium Thermotoga maritima. Substrate preferences of 14 kinases mainly from the FGGY and PfkB families were inferred by bioinformatics analysis and biochemically characterized by screening with a panel of 45 different carbohydrates. Most of the analyzed enzymes displayed narrow substrate preferences corresponding to their predicted physiological roles in their respective catabolic pathways. The observed consistency supports the choice of kinases as signature enzymes for genomics-based identification and reconstruction of sugar utilization pathways. Use of the integrated genomic and experimental approach greatly speeds up the identification of the biochemical function of unknown proteins and improves the quality of reconstructed pathways.  相似文献   

18.
Monoterpenes are important renewable resources for the perfume and flavour industry but the pathways and enzymology of their degradation by microorganisms are not well documented. Until recently the acyclic monoterpene alcohols, (+)-camphor and the isomers of limonene were the only compounds for which significant sections of catabolic pathways and associated enzymology had been reported. In this paper recent developments in our understanding of the enzymology of ring cleavage by microorganisms capable of growth with 1,8-cineole and -pinene are described. 1,8-Cineole has the carbocyclic skeleton of a monocyclic monoterpene with the added complication of an internal ether linkage. Ring hydroxylation strategy and biological Baeyer-Villiger oxygenation lead to an efficient method for cleaving the ether linkage. -Pinene is an unsaturated bicyclic monoterpene hydrocarbon. At least two catabolic pathways exist. Information concerning one of them, in which -pinene may be initially converted into limonene, is rudimentary. The other involves attack at the double bond resulting in formation of -pinene epoxide. Ring cleavage is then catalysed by a novel lyase that requires no additional components and breaks both carbocyclic rings in a concerted manner.  相似文献   

19.
Data from the Workplace Environmental Monitoring Program was used to evaluate the concentrations and risk of occupational exposure to styrene in different industries to identify which industries should be prioritized for styrene exposure management. Risk assessments were conducted for the five industries with several workplaces that mostly use styrene: motor vehicle and motorcycle maintenance and repair services, other chemical product manufacturing, ship and boat building, basic chemical manufacturing, and plastic products manufacturing. The highest central tendency exposure was found in the plastic products manufacturing industry (10.14 mg/m3). In addition, the hazard quotient (HQ) for central tendency exposure exceeded 1 only in the plastic products manufacturing industry. Almost two-thirds (62.2%) of workplaces in the plastic products manufacturing industry have an HQ exceeding 1. We conclude that workers in the plastic products manufacturing industry are at the highest risk for styrene exposure, and those in motor vehicle and motorcycle maintenance and repair service and basic chemical manufacturing are at the lowest risk. These results show that styrene exposure could be most effectively managed by prioritizing control measures in the plastic products manufacturing industry.  相似文献   

20.
The current knowledge on the genetics and biochemistry of the catabolism of aromatic compounds in Escherichia coli settles the basis to consider these pathways as a model system to study the complex molecular mechanisms that control the expression of the genes involved in the metabolism of less-preferred carbon sources in this paradigmatic organism. Two different levels of regulation are reviewed: (i) the specific regulatory mechanisms that drive the expression of the catabolic genes when the cognate inducer, i.e., the substrate of the pathway or an intermediate metabolite, is available, and (ii) the global or superimposed regulation that adjust the expression of the catabolic clusters to the general physiological status of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号