首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Of 103 neurons in the rostral part of the posterior sigmoid gyrus of the cat cortex 30 responded to stimulation of the ventro-posterolateral and ventrolateral nuclei of the thalamus (VPL and VL), 42 responded to stimulation of VL only, and 31 to stimulation of VPL only. It was shown by intracellular recording that stimulation of VPL induces a spike response with or without subsequent IPSPs in some neurons and an initial IPSP in others. The spike frequency of single neurons reached 60/sec, but the IPSP frequency never exceeded 10–20/sec. Stimulation of VL was accompanied by: a) antidromic spike responses; b) short-latency monosynaptic EPSPs and spikes capable of following a stimulation frequency of 100/sec; c) long-latency polysynaptic EPSPs and spikes appearing in response to stimulation at 4–8/sec; d) short-latency IPSPs; e) long-latency IPSPs increasing in intensity on repetition of infrequent stimuli. It is concluded that the afferent inputs from the relay nuclei to neurons of the somatosensory cortex are heterogeneous. An important role is postulated for recurrent inhibition in the genesis of the long-latency IPSPs arising in response to stimulation of VL, and for direct afferent inhibition during IPSPs evoked by stimulation of VPL. It is shown that the rostral part of the posterior sigmoid gyrus performs the role of somatic projection and motor cortex simultaneously.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 245–255, May–June, 1972.  相似文献   

2.
Peng YJ  Gong QL  Li P 《生理学报》1998,50(5):575-580
用细胞外记录的方法观察大鼠巨细胞旁外侧核(PGL)对刺激中脑导水管周围背侧部(dPAG)及腹外侧部(vPAG)、腓深神经(DPN)、正中神经(MN)和内脏大神经(GSPL)的反应。这些神经元不仅对某一处刺激部位起反应,而且倾向于对其它任一刺激部位也起反应。89%(73/82)的神经元接受两处或两处以上来源的汇聚投射。60%(21/35)的神经元由于具有压力敏感性,并且其下行投射到脊髓的轴突具有慢的  相似文献   

3.
The effects of segmental reflexes on descending intersegmental reflexes to stimulation of forelimb afferents were studied in anesthetized cats by recording postsynaptic responses from single motoneurons. Interaction between these influences was found to be reciprocal in character for groups of neurons with primary connections with afferents of the superficial and deep branches of the peroneal nerve and afferents of the nerve to the gastrocnemius muscle. Excitatory postsynaptic responses arising in groups of motoneurons of the peroneal nerve to stimulation of forelimb afferents underwent profound and prolonged inhibition during conditioning stimulation of afferents in the deep and superficial peroneal nerves. Activation of segmental afferents during conditioning stimulation of the gastrocnemius nerve was accompanied by inhibition of excitatory intersegmental responses and deinhibition of inhibitory responses in motoneurons of the gastrocnemius muscle. Segmental inhibition of intersegmental descending impulse activity appeared in the interneuron system of the segmental reflex centers connecting the descending propriospinal tracts with the motoneurons of these centers.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 16872-175, March–April, 1972.  相似文献   

4.
It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Direct mechanical stimulation of the diaphragm also elicited increased activity in the same VPL neurons that were activated by electrical stimulation of the phrenic nerve. Some VPL neurons responded to both phrenic afferent stimulation and shoulder probing. In rats, VPL neurons activated by inspiratory occlusion also responded to stimulation on phrenic afferents. These results demonstrate that phrenic afferents can reach the VPL thalamus under physiological conditions and support the hypothesis that the thalamic VPL nucleus functions as a relay for the conduction of proprioceptive information from the diaphragm to the contralateral somatosensory cortex.  相似文献   

5.
The organization of somatosensory input and the input-output relationships in regions of the agranular frontal cortex (AGr) and granular parietal cortex (Gr) were examined in the chronic awake guinea pig, using the combined technique of single-unit recording and intracortical microstimulation (ICMS). AGr, which was cytoarchitectonically subdivided into medial (AGrm) and lateral (AGrl) parts, also can be characterized on a functional basis. AGrl contains the head, forelimb, and most hindlimb representations; only a small number of hindlimb neurons are confined in AGrm. Different distributions of submodalities exist in AGr and Gr: AGr receives predominantly deep input (with the exception of the vibrissa region, which receives cutaneous input), whereas neurons of Gr respond almost exclusively to cutaneous input. The cutaneous or deep receptive field (RF) of each neuron was determined by natural peripheral stimulation. All studied neurons were activated by small RFs, with the exception of lip, nose, pinna, and limb units of lateral Gr (Grl), for which the RFs were larger.

Microelectrode mapping experiments revealed the existence of three spatially separate, incomplete body maps in which somatosensory and motor representations overlap. One body map, with limbs medially and head rostrolaterally, is contained in AGr. A second map, comparable to the first somatosensory cortex (SI) of other mammals, is found in Gr, with hindlimb, trunk, forelimb, and head representations in an orderly mediolateral sequence. An unresponsive zone separates the head area from the forelimb region. A third map, with the forelimb rostrally and the hindlimb caudally, lies adjacent and lateral to the SI head area. This limb representation, which is characterized by an upright and small size compared to that found in SI, can be considered to be part of the second somatosensory cortex (SII). A distinct head representation was not recognized as properly belonging to SII, but the evidence that neurons of the SI head region respond to stimulation of large RFs located in lips, nose, and pinna leads us to hypothesize that the SII face area overlaps that of SI to some extent, or, alternatively, that the two areas are strictly contiguous and the limits are ambiguous, making them difficult to distinguish.

The input-output relationships were based on the results of RF mapping and ICMS in the same electrode penetration. The intrinsic specific interconnections of cortical neurons whose afferent input and motor output is related to identical body regions show a considerable degree of refinement. The input-output correspondence is especially pronounced for neurons with small RFs. This study confirms and extends similar data recently reported for other rodents.  相似文献   

6.
After odor conditioning intact Limax maximus and injecting LY into their haemocoel, labeled groups of neurons are found in either the right or left procerebral lobe but never in both procerebral lobes. This suggests that a competitive interaction occurs between right and left odor processing pathways of which the procerebral lobe is a part. We use the nerve discharge in the external peritentacular nerve evoked by applying a puff of conditioned odor to the nose to document crossed inhibition between left and right odor processing pathways. Responses in the external peritentacular nerve evoked by stimulating one superior nose with a conditioned odor are strongly lateralized as responses occur only on the stimulated side. Stimulating both superior noses simultaneously with the same conditioned odor yields responses in both external peritentacular nerves that resemble the sum of responses to unilateral stimulation. Simultaneously stimulating both superior noses, each with a different conditioned odor, leads to strong inhibition of both external peritentacular nerve responses. The crossed inhibition is also evident if both superior and inferior noses on the same side are stimulated simultaneously. A lateral inhibitory mechanism, situated postsynaptic to odor recognition, appears to inhibit external peritentacular nerve responses if the two noses receive conflicting sensory inputs. Accepted: 14 December 1999  相似文献   

7.
Responses of neurons in the antennal lobe (AL) of the moth Manduca sexta to stimulation of the ipsilateral antenna by odors consist of excitatory and inhibitory synaptic potentials. Stimulation of primary afferent fibers by electrical shock of the antennal nerve causes a characteristic IPSP-EPSP synaptic response in AL projection neurons. The IPSP in projection neurons reverses below the resting potential, is sensitive to changes in external and internal chloride concentration, and thus is apparently mediated by an increase in chloride conductance. The IPSP is reversibly blocked by 100 microM picrotoxin or bicuculline. Many AL neurons respond to application of GABA with a strong hyperpolarization and an inhibition of spontaneous spiking activity. GABA responses are associated with an increase in neuronal input conductance and a reversal potential below the resting potential. Application of GABA blocks inhibitory synaptic inputs and reduces or blocks excitatory inputs. EPSPs can be protected from depression by application of GABA. Muscimol, a GABA analog that mimics GABA responses at GABAA receptors but not at GABAB receptors in the vertebrate CNS, inhibits many AL neurons in the moth.  相似文献   

8.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted. The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition-test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

9.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted.

The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition—test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

10.
We determined the activity of neurons within the nucleus of the solitary tract (NTS) after stimulation of the cornea and assessed whether this input affected the processing of baroreceptor and peripheral chemoreceptor inputs. In an in situ, unanesthetized decerebrate working heart-brain stem preparation of the rat, noxious mechanical or electrical stimulation was applied to the cornea, and extracellular single unit recordings were made from NTS neurons. Cornea nociceptor stimulation evoked bradycardia and an increase in the cycle length of the phrenic nerve discharge. Of 90 NTS neurons with ongoing activity, corneal stimulation excited 51 and depressed 39. There was a high degree of convergence to these NTS neurons from either baroreceptors or chemoreceptors. The excitatory synaptic response in 12 of 19 baroreceptive and 10 of 15 chemoreceptive neurons was attenuated significantly during concomitant electrical stimulation of the cornea. This inhibition was GABA(A) receptor mediated, being blocked by pressure ejection of bicuculline. Thus the NTS integrates information from corneal receptors, some of which converges onto neurons mediating reflexes from baroreceptors and chemoreceptors to inhibit these inputs.  相似文献   

11.
Cortical foci in which stimulation produced movement in either the forelimb or hindlimb were isolated in rats. In each experiment, two foci were selected: one for movement in the forelimb, and the other in the hindlimb. Stimulation was subsequently reduced in order to avoid eliciting a movement, and the effects of this stimulation on activity of gracile and cuneate neurons were examined. Both excitation and inhibition were observed and were found to be arranged in a somatotopic manner. Excitation was almost exclusively obtained when the receptive field (RF) of a given neuron corresponded to the body surfaces overlying the joints involved in the cortically evoked movement. A high percentage of neurons with RFs on body surfaces corresponding to, or adjacent to, the region of cortically induced movement were inhibited, while the activity of neurons with RFs distant to the site of movement was seldom modified. These results suggest that cortical influences exerted on the dorsal column nuclei (DCN) in rats are organized in a somatotopic manner.  相似文献   

12.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

13.
This study investigated the efficacy of magnetic stimulation on the reflex cardiovascular responses induced by gastric distension in anesthetized rats and compared these responses to those influenced by electroacupuncture (EA). Unilateral magnetic stimulation (30% intensity, 2 Hz) at the Jianshi-Neiguan acupoints (pericardial meridian, P 5-6) overlying the median nerve on the forelimb for 24 min significantly decreased the reflex pressor response by 32%. This effect was noticeable by 20 min of magnetic stimulation and continued for 24 min. Median nerve denervation abolished the inhibitory effect of magnetic stimulation, indicating the importance of somatic afferent input. Unilateral EA (0.3-0.5 mA, 2 Hz) at P 5-6 using similar durations of stimulation similarly inhibited the response (35%). The inhibitory effects of EA occurred earlier and were marginally longer (20 min) than magnetic stimulation. Magnetic stimulation at Guangming-Xuanzhong acupoints (gallbladder meridian, GB 37-39) overlying the superficial peroneal nerve on the hindlimb did not attenuate the reflex. Intravenous naloxone immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex, suggesting involvement of the opioid system. Also, intrathecal injection of delta- and kappa-opioid receptors antagonists, ICI174,864 (n=7) and nor-binaltorphimine (n=6) immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex. In contrast, the mu-opioid antagonist CTOP (n=7) failed to alter the cardiovascular reflex. The endogenous neurotransmitters for delta- and kappa-opioid receptors, enkephalins and dynorphin but not beta-endorphin, therefore appear to play significant roles in the spinal cord in mediating magnetic stimulation-induced modulation of cardiovascular reflex responses.  相似文献   

14.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

15.
Interaction between responses to acoustic clicks and to electrodermal stimulation of the contralateral forelimb was investigated in 78 neurons in the magnocellular part of the medial geniculate body of curarized cats. Of this number, 33 neurons responded by discharges both to clicks and to electrodermal stimulation, 25 responded to clicks only, and 20 to electrodermal stimulation only, or to stimulation of the dorsal funiculus of the spinal cord. Conditioning stimulation evoked inhibition of the response to the testing stimulus in 32 of 33 neurons responding by spike discharges to both clicks and electrodermal stimulation. Electrodermal stimulation inhibited responses to clicks in all the neurons tested which responded only to clicks, whereas clicks evoked inhibition of responses to electrodermal stimulation (or to stimulation of the dorsal funiculus) in only four of the 20 neurons which responded to these types of stimulation only. It is suggested that inhibition of excitability arising in neurons of the magnocellular part of the medial geniculate body during interaction between auditory and somatosensory afferent volleys is based on postsynaptic inhibition.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 368–374, July–August, 1980.  相似文献   

16.
Responses of neurons of motor cortex evoked by stimulations of pyramidal tract (PT) and ventroposterolateral (VPL) nucleus of thalamus were studied in cats immobilized by Myorelaxin. Antidromic spikes were found in 22.6% and in 9.9% of cortical cells when PT and VPL were stimulated, respectively. Fast- and slow-conducting PT-neurones could be differentiated according to antidromic excitation latencies. PT stimulation evoked EPSPs in 46.3% of studied neurones and VPL stimulation--in 48.2% ones. Monosynaptic EPSPs were identified in responses of fast- and slow-conducting PT-units and of neurones projecting in VPL; mechanisms and functional role of such reactions are discussed. Di- and polysynaptic IPSPs were evoked in 74.5% of units by PT stimulation and in 94.4%--by VPL stimulation. Three groups of IPSPs were classified with durations to 120, 130-280 and more than 300 ms. Duration of PT-evoked IPSPs was higher in cortical neurones from surface layers and VPL-evoked ones--in units localized in deep layers.  相似文献   

17.
盆神经和阴部神经传入在大鼠腰骶髓的相互作用   总被引:8,自引:0,他引:8  
Wang RP  Li QJ  Lu GW 《生理学报》2000,52(2):115-118
应用条件-检验刺激技术观察时间依赖性抑制现象是研究传入信息相互作用的方式之一。用1.5-3倍阈刺激强度的电脉冲交替刺激麻醉、麻痹的盆神经(Pe)和阴部神经(Pu),以玻璃微电极在L6-S1节段脊髓背角会聚神经元上记录细胞外放电。条件输入可对深层(>300μm)单位的检验反应产生时间依赖性抑制效应,产生抑制的刺激间期为1-360ms,Pe为条件刺激时较长。浅层细胞(<300μm)发生抑制的间期为1-  相似文献   

18.
Responses of the neurons of the lateral and ventromedial hypothalamic regions (HL andHvm, respectively), as well as of the area of the dorsal hypothalamus (aHd) and the projection region of the medial forelimb bundle (MFB), evoked by stimulation of the proreal cortex (field 8), cingular cortex (field 24), pyriform lobula (periamigdalar cortex), and hippocampus (CA3) were studied in acute experiments on cats under ketamine anesthesia. Distributions of the latent periods of the responses recorded from hypothalamic neurons at stimulation of the above cortical structures were analyzed. The responses were classified into primary excitatory and primary inhibitory. Stimulation of the proreal gyrus evoked four times more excitatory responses than inhibitory responses. With stimulation of the cingular gyrus, the ratio of excitatory/inhibitory responses was 1.5∶1. Stimulation of the pyriform cortex evoked activatory and inhibitory responses with a similar probability. With hippocampal stimulation, inhibitory responses appeared two times more frequently than excitatory reactions. The hypothalamus was found to be a zone of wide convergence: one-half of all responding neurons in theHL andHvm responded to stimulations of two or more tested cortical zones. In 26% of the cells, only excitatory convergence was observed, while in 10% only inhibitory convergence was found; 21% of the cells revealed mixed convergence.  相似文献   

19.
To assess the organization and functional development of vestibulospinal inputs to cervical motoneurons (MNs), we have used electrophysiology (ventral root and electromyographic [EMG] recording), calcium imaging, trans‐synaptic rabies virus (RV) and conventional retrograde tracing and immunohistochemistry in the neonatal mouse. By stimulating the VIIIth nerve electrically while recording synaptically mediated calcium responses in MNs, we characterized the inputs from the three vestibulospinal tracts, the separate ipsilateral and contralateral medial vestibulospinal tracts (iMVST/cMVST) and the lateral vestibulospinal tract (LVST), to MNs in the medial and lateral motor columns (MMC and LMC) of cervical segments. We found that ipsilateral inputs from the iMVST and LVST were differentially distributed to the MMC and LMC in the different segments, and that all contralateral inputs to MMC and LMC MNs in each segment derive from the cMVST. Using trans‐synaptic RV retrograde tracing as well as pharmacological manipulation of VIIIth nerve‐elicited synaptic responses, we found that a substantial proportion of inputs to both neck and forelimb extensor MNs was mediated monosynaptically, but that polysynaptic inputs were also significant. By recording EMG responses evoked by natural stimulation of the vestibular apparatus, we found that vestibular‐mediated motor output to the neck and forelimb musculature became more robust during the first 10 postnatal days, concurrently with a decrease in the latency of MN discharge evoked by VIIIth nerve electrical stimulation. Together, these results provide insight into the complexity of vestibulospinal connectivity in the cervical spinal cord and a cogent demonstration of the functional maturation that vestibulospinal connections undergo postnatally. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1061–1077, 2016  相似文献   

20.
The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or 'vibrissae'). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory 'barrel' cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号