首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY. 1. Glycogen, poly-beta-hydroxyalkanoate (PHA) and electron transport system (ETS) activity levels were monitored seasonally in light- and dark-grown biofilms from a North Wales river.
2. A spring peak was evident in glycogen, PHA and ETS activity levels per cm2 and per cell, with the exception of PHA per cell, which peaked in the winter.
3. There was a seasonal shift in the type of storage product found, perhaps reflecting seasonal changes in carbon sources.
4. The light-grown spring biofilm yielded the greatest amount of bio-film storage products per cm2. This should be taken into account during caloric studies of river biofilms as a food source for grazing invertebrates.
5. A model is presented of factors influencing storage product deposition in river biofilms. The thickness and cell packing of river biofilms should be noted in future studies. Storage product deposition can occur deep within thick biofilms, irrespective of the river water chemistry.  相似文献   

2.
The impact of storm-flow on river biofilm architecture was investigated using transmission (TEM) and scanning (SEM) electron microscopy. TEM resin substrata were colonized under light-grown (LG) or dark-grown (DG) conditions for 33 weeks in the Clywedog River, North Wales, prior to exposure to ambient-flow (approx. 60 cm·s?1) or storm-flow (approx. 235 cm·s?1+ river sediment) in a laboratory flume. Line transect methodology was used to quantify information from TEM ultrathin sections of LG material. In the LG ambient-flow biofilm, bacteria were more abundant directly adjacent to the substratum and were noticeably denser directly under the adnate diatom Cocconeis. Higher in the biofilm, the bacteria were loosely dispersed in the matrix between other cells. Cyanobacteria occurred most frequently as single cells but were also found in large “palisade” formations adjacent to the substratum. Significant horizontal and vertical nearest-neighbor associations were noted for both bacteria and cyanobacteria. Cells of Cocconeis were common adjacent to the substratum, providing shelter to, and often elevated upon, an “organic pad” of bacteria, cyanobacteria, and densely staining exopolysaccharide. Cyanobacteria and Cocconeis were resistant to removal by storm-flow, but Cocconeis frustules were sometimes damaged. Bacteria in the LG storm-flow samples were less common adjacent to the substratum and were sometimes more dispersed higher in the biofilm than in ambient-flow samples. We suggest that storm-flow hydrodynamic forces may redistribute bacteria adjacent to the substratum into higher areas of the biofilm. In addition, bacteria and the exopolysaccharide matrix were sometimes removed down to the substratum by storm-flow, unless beneath Cocconeis. The DG biofilm consisted almost entirely of bacteria. Storm-flow only removed surface growth from DG biofilms, and SEM revealed peritrich stalk abrasion and “blow-down.” Pre-disturbance biofilm architecture appears to influence the form of destruction. We suggest that the “microcosms” of Cocconeis and their underlying cells not only serve as an inoculum to recolonize the surface when conditions permit but enhance immigration by interrupting flow patterns across the surface.  相似文献   

3.
Mayer SM  Beale SI 《Plant physiology》1990,94(3):1365-1375
Chlorophyll synthesis in Euglena, as in higher plants, occurs only in the light. The key chlorophyll precursor, δ-aminolevulinic acid (ALA), is formed in Euglena, as in plants, from glutamate in a reaction sequence catalyzed by three enzymes and requiring tRNAGlu. ALA formation from glutamate occurs in extracts of light-grown Euglena cells, but activity is very low in dark-grown cell extracts. Cells grown in either red (650-700 nanometers) or blue (400-480 nanometers) light yielded in vitro activity, but neither red nor blue light alone induced activity as high as that induced by white light or red and blue light together, at equal total fluence rates. Levels of the individual enzymes and the required tRNA were measured in cell extracts of light- and dark-grown cells. tRNA capable of being charged with glutamate was approximately equally abundant in extracts of light- and dark-grown cells. tRNA capable of supporting ALA synthesis was approximately three times more abundant in extracts of light-grown cells than in dark-grown cell extracts. Total glutamyl-tRNA synthetase activity was nearly twice as high in extracts of light-grown cells as in dark-grown cell extracts. However, extracts of both light- and dark-grown cells were able to charge tRNAGlu isolated from light-grown cells to form glutamyl-tRNA that could function as substrate for ALA synthesis. Glutamyl-tRNA reductase, which catalyzes pyridine nucleotide-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde (GSA), was approximately fourfold greater in extracts of light-grown cells than in dark-grown cell extracts. GSA aminotransferase activity was detectable only in extracts of light-grown cells. These results indicate that both the tRNA and enzymes required for ALA synthesis from glutamate are regulated by light in Euglena. The results further suggest that ALA formation from glutamate in dark-grown Euglena cells may be limited by the absence of GSA aminotransferase activity.  相似文献   

4.
Respiratory activity (ETS), ectoenzymatic activity (-glucosidase and -xylosidase) and photosynthetic 14C-bicarbonate incorporation in the biofilm were measured in a shaded stream during a colonization sequence (43 days) on artificial substrates (unglazed clay tiles) and compared with older (aged) tiles. In the first five days bacterial densities and ectoenzyme activities showed a sharp increase. After two weeks, algal density, chlorophyll and productivity increased moderately. Chlorophyll did not reach similar values to those of the aged biofilms until the last day of colonization. Photosynthetic activity seemed to be relevant to the heterotrophs metabolism during substrate colonization, as could be deduced from the significant correlation between -glucosidase and 14C-bicarbonate incorporation, algal cell densities and chlorophyll. Respiratory activity (ETS) decreased in the older biofilms, accordingly to their higher algal and bacterial density. Younger biofilms (up to 8 days old) showed higher ETS activity per cell, indicating a fast response of microorganisms to substrate availability.  相似文献   

5.
SUMMARY. 1. Extracellular hydrolytic enzyme activities and cell densities were monitored during undisrupted biofilm formation on pristine surfaces in two contrasting river sites in North Wales: an oligotrophic mountain stream (Nant Waen) and a mildly eutrophic river (River Clywedog).
2. Bacterial densities generally increased at both sites over a 33-day monitoring period. Densities in the eutrophic site were approximately 14 times greater than in the mountain stream.
3. Using fluorescent substrate analogues, biofilms from Nant Waen produced low, variable xylosidase and β-glucosidase activities. Biofilms from the more eutrophic River Clywedog produced higher xylosidase and β-glucosidase activities and detectable endopeptidase, though these activities also fluctuated during the colonization period.
4. Unlike the other activities measured, esterase activities in the River Clywedog were correlated with cell densities ( P <0.05). When extracellular esterase activities per cell were calculated, the oligotrophic biofilm was found to contain about twice as much extracellular esterase activity as the more eutrophic River Clywedog biofilm.  相似文献   

6.
Biofilms are major sites of carbon cycling in streams and rivers. Here we elucidate the relationship between biofilm structure and function and river DOC dynamics. Metabolism (extracellular enzymatic activity) and structure (algae, bacteria, C/N content) of light-grown (in an open channel) and dark-grown (in a dark pipe) biofilms were studied over a year, and variations in dissolved organic carbon (DOC) and biodegradable DOC (BDOC) were also recorded. A laboratory experiment on 14C-glucose uptake and DOC dynamics was also performed by incubating natural biofilms in microcosms. On the basis of our field (annual DOC budget) and laboratory results, we conclude that light-grown biofilm is, on annual average, a net DOC consumer. This biofilm showed a high monthly variability in DOC uptake/release rates, but, on average, the annual uptake rate was greater than that of the dark-grown biofilm. The higher algal biomass and greater structure of the light-grown biofilm may enhance the development of the bacterial community (bacterial biomass and activity) and microbial heterotrophic activity. In addition, the light-grown biofilm may promote abiotic adsorption because of the development of a polysaccharide matrix. In contrast, the dark-grown biofilm is highly dependent on the amount and quality of organic matter that enters the system and is more efficient in the uptake of labile molecules (higher 14C-glucose uptake rate per mgC). The positive relationships between the extracellular enzymatic activity of biofilm and DOC and BDOC content in flowing water indicate that biofilm metabolism contributes to DOC dynamics in fluvial systems. Our results show that short-term fluvial DOC dynamics is mainly due to the use and recycling of the more labile molecules. At the river ecosystem level, the potential surface area for biofilm formation and the quantity and quality of available organic carbon might determine the effects of biofilm function on DOC dynamics.  相似文献   

7.
Guan HP  Janes HW 《Plant physiology》1991,96(3):922-927
Effects of light on carbohydrate levels and certain carbon metabolizing enzyme activities were studied during the early development of tomato (Lycopersicon esculentum) fruit. Sucrose levels were low and continued to decline during development and were unaffected by light. Starch was significantly greater in light. Invertase activity was similar in both light- and dark-grown fruit. Sucrose synthase activity was much lower than invertase and showed a slight decrease in light-grown fruit between days 21 and 28. Light-grown fruit also had higher ADP glucose pyrophosphorylase activity than dark-grown fruit, which was correlated with higher starch levels. The rapidly decreasing activity of ADP glucose pyrophosphorylase during early fruit development in the dark in conjunction with reduced starch levels and rates of accumulation indicates that ADP glucose pyrophosphorylase is crucial for carbon import and storage in tomato. The differential stimulation of ADP glucose pyrophosphorylase activity from light- and dark-grown tissue by 3-phosphoglycerate suggests that this enzyme may be allosterically altered by light.  相似文献   

8.
9.
《Experimental mycology》1987,11(3):187-196
The synthesis of the secondary metabolites, polyketides, by fungi has been proposed to be regulated by theNADPH/NADP> ratio, which determines whether acetyl units are incorporated into fatty acids or polyketides. In the moldAlternaria alternata synthesis of the polyketide alternariol is inhibited by light while lipid synthesis is enhanced compared with mycelia grown in darkness. The activity andKm values of enzymes in NADPH-generating pathways were measured in dark-grown (polyketide-producing) and light-grown (nonproducing) mycelia ofA. alternata. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, and NADP-isocitrate dehydrogenase each had a similar specific activity andKm in light- compared with dark-grown cultures at the time of onset of polyketide synthesis. NADP-mannitol dehydrogenase activity was two times higher in dark-grown than in light-grown mycelia. TheKm (mannitol) for the enzyme and the mycelial mannitol content were the same. When incorporation of [14C[mannitol into lipids was measuredin vivo the rate of mannitol oxidation was similar in light and darkness. These results suggest that the NADPH-generating capacity is not reduced in dark-grown as compared with light-grownA. alternata.  相似文献   

10.
1. Aerobic respiration, productivity and the carbon turnover rate of microbial biofilms were determined at hyporheic and phreatic sites in the Kalispell Valley alluvial aquifer along a transect extending 3.9 km laterally from the main channel of the Flathead River, a sixth order river in Montana (U.S.A.). The effect of experimentally increasing bioavailable organic carbon (acetate) on the respiration rate of biofilms in this carbon‐poor [dissolved organic carbon (DOC) < 2 mg L?1] aquifer was also measured. 2. Chambers containing natural substratum were placed in‐situ and allowed to colonise for 20 weeks. After 4, 12 and 20 weeks, they were taken to the laboratory where oxygen flux was measured in a computer‐controlled, flow‐through respirometry system. 3. Respiration ranged from 0.01 to 0.33 mg O2 dm?3 h?1 across sites, with means ranging from 0.10 to 0.17 mg O2 dm?3 h?1. Productivity estimates ranged from 0.18 to 0.32 mg C dm?3 day?1 (mean 0.25, SE 0.03). The total organic carbon (TOC) of the microbial biofilms ranged from 18.2 to 29.7 mg C dm?3. Turnover rate ranged from 3.2 to 5.6 year?1 with a mean of 4.2 year?1. 4. At the hyporheic site very close to the river, respiration did not significantly increase when samples were supplemented with labile carbon. Respiration increased with increasing DOC addition at hyporheic sites more distant from the river, suggesting a carbon‐limitation gradient within the hyporheic zone. Microbes at the phreatic site did not respond to increasing DOC addition, suggesting that the phreatic biofilm is adapted to low carbon availability. 5. Comparing the volume of the alluvial aquifer (about 0.7 km3) to that of the river benthic sediments (to 0.25 m depth, which amounts to about 1.6 × 10?4 km3) within the Flathead Valley, leads to the conclusion that interstitial microbial productivity is orders of magnitude greater than benthic productivity. Alluvial aquifers are often voluminous and microbial production is an enormous component of ecosystem production in rivers such as the Flathead.  相似文献   

11.
The gibberellins (GAs) are endogenous regulators of plant growth. Experiments are described here that test the hypothesis that GA regulates hypocotyl growth by altering the extent of hypocotyl cell elongation. These experiments use GA-deficient and altered GA-response mutants of Arabidopsis thaliana (L.) Heyhn. It is shown that GA regulates elongation, in both light- and dark-grown hypocotyls, by influencing the rate and final extent of cellular elongation. However, light- and dark-grown hypocotyls exhibit markedly different GA dose-response relationships. The length of dark-grown hypocotyls is relatively unaffected by exogenous GA, whilst light-grown hypocotyl length is significantly increased by exogenous GA. Further analysis suggests that GA control of hypocotyl length is close to saturation in dark-grown hypocotyls, but not in light grown hypocotyls. The results show that a large range of possible hypocotyl lengths is achieved via dose-dependent GA-regulated alterations in the degree of elongation of individual hypocotyl cells.Key words: Arabidopsis, cell elongation, gibberellin (GA), GA mutants, hypocotyl.   相似文献   

12.
1. The composition and activity of phytoplankton, zooplankton and bacterioplankton in the lower River Rhine were measured in 1990 as part of an international biological inventory of the river. A seasonal study was carried out on two stations: one in the river mouth (km 1019) and one at the German/Dutch border (km 863). 2. High densities of phytoplankton (with up to 140 μg chlorophyll a 1-?1) and occasional depletion of dissolved silicate were observed at the upstream station. Phosphate concentrations were also lowered during blooms. 3. Phytoplankton blooms, dominated by a few species of centric diatoms, declined one order of magnitude during downstream transport. During non-bloom conditions (low) algal densities were maintained during transport, or increased slightly, indicating the suitability of the river reach for algal growth. 4. Bacterial cell number and production (measured by the 3H-thymidine method) showed a broad summer maximum with activity peaks (0.5 nK < M thymidine h?1) coincident with declining phytoplankton blooms. Winter values of bacterial production (0.02–0.05 n < Mh?1) were substantial, probably as a result of allochthonous input of organic matter. 5. Rotifers and crustaceans made up the greater part of the zooplankton biovolume, but at the upstream station the contribution of Dreissena larvae and rhizopods was also substantial. High zooplankton biovolumes, of over 500 × 106μm31-?1, were observed only during the phytoplankton spring bloom. 6. Quantitative relationships between the high phytoplankton production (2.1–3.4 gCm?2 day?1), the high bacterial substrate uptake (0.5–1gCm?2 day?1), and grazing were analysed for the growing season 1990. Algal grazing by metazoan herbivores was substantial only during spring, while the role of phagotrophic microplankton and cell lysis were indicated as major factors responsible for the downstream decline of phytoplankton blooms in the lower Rhine.  相似文献   

13.
Using pharmacological and chromatographic techniques, it was shown that acetylcholine was present in all organs of both light- and dark-grown mung bean seedings (Phaseolus aureus). The highest concentrations were found in tissues containing active growing points: buds and secondary roots. Within 4 minutes, red light caused an increase in the efflux of acetylcholine from secondary root tips as well as a significant increase in the endogenous titer. Four minutes of subsequent far red light reduced the latter to a level comparable to that in the dark.  相似文献   

14.
Motility of estuarine epipelic (mud‐inhabiting) diatoms is an important adaptation to living in biofilms present within fine sediments. Motility allows cells to migrate within the photic zone in response to a wide range of environmental stimuli. The motile responses of two species of benthic diatoms to photon fluence rates and spectral quality were investigated. Cultures of Navicula perminuta (Grunow) in van Heurck and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reimann both exhibited photoaccumulation at ~200 μmol · m?2 · s?1 and photodispersal from photon flux densities (PFDs) of ~15 μmol · m?2 · s?1. Photokinesis (changing cell speed) contributed toward photodispersal for both species, and red light (λ = 681–691 nm) was most effective at inducing this process. N. perminuta showed a phototactic (directional) response, with active movement in response to a light gradient. Although this response was exhibited in white light, these directional responses were only elicited by wavelengths from 430 to 510 nm. In contrast, C. closterium did not exhibit phototaxis under any light conditions used in this study. Motile benthic diatoms thus exhibit complex and sophisticated responses to light quantity and quality, involving combinations of photokinesis and phototaxis, which can contribute toward explaining the patterns of large‐scale cell movements observed in natural estuarine biofilms.  相似文献   

15.
Abstract

Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 μm h?1 in the turbulent flow cell and 1.0 μm h?1 in the laminar flow cell.  相似文献   

16.
The attachment rates of wild-type, smooth-swimming, tumbly, and paralyzed Escherichia coli to glass was measured at fluid velocities of 0.0044 and 0.044 cms−1 (corresponding to shear rates of 0.34 and 3.4 s−1, respectively), in 0.02 and 0.2 M buffer solutions. At the highest ionic strength, we did not observe a significant difference in the attachment rate of wild-type and paralyzed cells at either fluid velocity. However, when the ionic strength was reduced, paralyzed bacteria attached at rates 4 and 10 times lower than that of the wild type under fluid velocities of 0.0044 and 0.044 cms−1, respectively. This suggested that the rotation of the flagella assisted in attachment. We then compared the attachment rates of smooth-swimming (counterclockwise rotation only) and tumbly (clockwise rotation only) cells to the wild type to determine whether the direction of rotation was important to cell attachment. At 0.0044 cms−1, the smooth-swimming cells attached at rates similar to that of the wild type in both buffer solutions but significantly less at the higher fluid velocity. Tumbly cells attached at much lower rates under all conditions. Thus, the combination of clockwise and counterclockwise flagellar rotation and their coupling appeared to be important in cell attachment. We considered a number of hypotheses to interpret these observations, including a residence time analysis and a comparison of traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to soft-particle theory.  相似文献   

17.
Littoral flow rates within and around submersed macrophyte communities   总被引:2,自引:1,他引:1  
  • 1 The magnitude and range of water flow rates were measured within and adjacent to plant beds at different depths and among different dominant submersed plant species in the littoral zones of two lakes with contrasting morphometry.
  • 2 There was very little variability in within-bed flow rates, either for locations within or among beds. However, when significant differences occurred in within-bed flow rates, the higher rates occurred predominately near the bottom of the Scirpus subterminalis bed where the plant surface area to water volume ratio was lowest.
  • 3 Factors such as bed depth and dominant species had little effect on within-bed flow rate variance. Flows external to the plant beds were dissipated within 10–15 cm of the outer plant-bed boundary even under severe external flow-rate conditions (flow rate ~ 30cms?1).
  • 4 The mean within-bed flow rate was 0.07cms?1 and individual experiment means ranged from 0.03 to 0.46cms?1. These flow rates resulted in estimates of laminar flow boundary layer thickness, 1 mm from the leading edge of the leaf, ranging from 9.1 to 2.3mm. These estimates are much larger than submersed macrophyte leaf thicknesses themselves (<1 mm).
  相似文献   

18.
Respiratory electron transport system (ETS) activity and oxygen consumption in the interstitial water, and in the fine (i.e. silt) and coarse (sand) sediment fractions from the hyporheic zone of the prealpine river Bača (W Slovenia) have been measured in order to estimate the intensity of potential and actual carbon mineralization through microbial communities. Hyporheic samples from the river bed (RB) and gravel bars (GB) were compared. ETS activity and oxygen consumption of all fractions from the RB did not differ significantly from those from the GB. ETS activity and oxygen consumption of biofilm attached to 1 g of the silt were higher than of that attached to the same mass of the sand. A significant correlation between ETS activity and oxygen consumption indicated that the former should be a good indicator of intensity of bioactivity in hyporheic sediments. The ratio of ETS activity to oxygen consumption (ETS/R ratio) revealed that the oxygen consumption of microorganisms is responsible for approximately 60% of the metabolic potential in the hyporheic sediments. The contributions of different fractions of sediment to the total ETS activity differed between RB and GB. The contribution of microorganisms in the interstitial water and silt was higher in GB than in the RB, but the sand fraction contributed less to potential carbon loss in GB than in the RB. Average total respiratory carbon loss per volume through the hyporheic zone was higher in the RB than in GB. The main reasons suggested are the different intensity of exchange of surface water with the hyporheic zone, and the rate of consolidation of sediments, which is primarily a function of river hydrology and geomorphology. Handling editor: J. Padisak  相似文献   

19.
1H NMR relaxometry is applied for the investigation of pore size distributions in geological substrates. The transfer to humous soil samples requires the knowledge of the interplay between soil organic matter, microorganisms and proton relaxation. The goal of this contribution is to give first insights in microbial effects in the 1H NMR relaxation time distribution in the course of hydration of humous soil samples. We observed the development of the transverse relaxation time distribution of the water protons after addition of water to air dried soil samples. Selected samples were treated with cellobiose to enhance microbial activity. Besides the relaxation time distribution, the respiratory activity and the total cell counts were determined as function of hydration time. Microbial respiratory activities were 2–15 times higher in the treated samples and total cell counts increased in all samples from 1×109 to 5×109 cells g−1 during hydration. The results of 1H NMR relaxometry showed tri-, bi- and mono-modal relaxation time distributions and shifts of peak relaxation times towards lower relaxation times of all investigated soil samples during hydration. Furthermore, we found lower relaxation times and merging of peaks in soil samples with higher microbial activity. Dissolution and hydration of cellobiose had no detectable effect on the relaxation time distributions during hydration. We attribute the observed shifts in relaxation time distributions to changes in pore size distribution and changes in spin relaxation mechanisms due to dissolution of organic and inorganic substances (e.g. Fe3+, Mn2+), swelling of soil organic matter (SOM), production and release of extracellular polymeric substances (EPS) and bacterial association within biofilms.  相似文献   

20.
Mitochondria isolated from shoots of 2 days, light- and dark-grown winter wheat (Triticum aestivum L. cv. Rideau) seedlings oxidize alpha-ketoglutarate and l-malate with good respiratory control and ADP: O ratios. The efficiency of oxidative phosphorylation, and respiratory control are both reduced significantly when succinate or NADH is employed as substrate. Respiratory control values and ADP: O ratios show a general decline in mitochondria from seedlings of increasing age, whether grown in light or dark. In light-grown seedlings, the decrease in respiratory control with aging is due principally to a decrease in the rate of state 3 respiration, while in dark-grown material, the decrease appears to be due mainly to an increased rate of state 4 respiration. In both light- and dark-grown seedlings, oxygen consumption during state 3 respiration is severely inhibited by oligomycin. During state 4 respiration, 2,4-dinitrophenol stimulates oxygen uptake to a level approximately two-thirds the normal ADP-stimulated rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号