首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Predation by the red fox Vulpes vulpes is believed to be threatening the little penguin Eudyptula minor on Phillip Island in Victoria. Polymorphism at seven microsatellite loci was examined to estimate the extent of differentiation between Phillip Island and mainland populations of V. vulpes. Loss of alleles has occurred on Phillip Island where foxes first appeared = 88 years ago compared with mainland populations. Genetic differentiation between the Phillip Island and mainland populations was high. The relatively high differentiation found between the two populations could be due to either low migration rates, the effect of the composition of founder animals or both effects. Further ecological and historical information about the populations is needed to explore the likely significance of these effects.  相似文献   

2.
The influence of Pleistocene climatic oscillations on shaping the genetic structure of Asian biota is poorly known. The Japanese pipistrelle bat occurs over a wide range in eastern Asia, from Siberia to Japan. To test the relative impact of ancient and more recent events on genetic structure in this species, we combined mitochondrial (cytochrome b) and microsatellite markers to reconstruct its phylogeographic and demographic history on continental China and its offshore islands, Hainan Island and the Zhoushan Archipelago. Our mitochondrial DNA tree recovered two divergent geographical clades, indicating multiple glacial refugia in the region. The first clade was mainly confined to Hainan Island, indicating that gene flow between this population and the continent has been restricted, despite being repeatedly connected to the mainland during repeated glacial episodes. By contrast, haplotypes sampled on the Zhoushan Archipelago were mixed with those from the mainland, suggesting a recent shared history of expansion. Although microsatellite allele frequencies showed clear discontinuities across the sampling range, supporting the current isolation of both Hainan Island and the Zhoushan Archipelago, we also found clear evidence of more recent back colonization, probably via post‐glacial expansion or, in the latter case, occasional long distance dispersal. The results obtained highlight the importance of using multiple sets of markers for teasing apart the roles of ancient and more recent events on population genetic structure. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 582–594.  相似文献   

3.
4.
Following a dramatic decline last century, the British population of the endangered greater horseshoe bat Rhinolophus ferrumequinum is highly fragmented. To examine the consequences of fragmentation and limited dispersal on patterns of genetic structure and variation, we used microsatellite markers to screen bats from around 50% of the known maternity colonies in Britain, and two areas from continental Europe. Analyses revealed that Welsh and English colonies were genetically isolated. This, and lower variability in Britain than north France, may result from either genetic drift, or the species' colonization history. Gene flow among most neighbouring colonies was not generally restricted, with one exception. These findings have important implications for the ongoing conservation management of this species.  相似文献   

5.
Metapopulation dynamics are increasingly invoked in management and conservation of endangered species. In this context, asymmetrical gene flow patterns can be density dependent, with migration occurring mainly from larger into smaller populations, which may depend on it for their persistence. Using genetic markers, such patterns have recently been documented for various organisms including salmonids, suggesting this may be a more general pattern. However, metapopulation theory does not restrict gene flow asymmetry to 'source-sink' structures, nor need these patterns be constant over longer evolutionary timescales. In anadromous salmonids, gene flow can be expected to be shaped by various selective pressures underlying homing and dispersal ('straying') behaviours. The relative importance of these selective forces will vary spatially and for populations of different census size. Furthermore, the consequences of life-history variation among populations for dispersal and hence gene flow remain poorly quantified. We examine population structure and connectivity in Atlantic salmon (Salmo salar L.) from Newfoundland and Labrador, a region where populations of this species are relatively pristine. Using genetic variation at 13 microsatellite loci from samples (N=1346) collected from a total of 20 rivers, we examine connectivity at several regional and temporal scales and test the hypothesis that the predominant direction of gene flow is from large into small populations. We reject this hypothesis and find that the directionality of migration is affected by the temporal scale over which gene flow is assessed. Whereas large populations tend to function as sources of dispersal over contemporary timescales, such patterns are often changed and even reversed over evolutionary, coalescent-derived timescales. These patterns of population structure furthermore vary between different regions and are compatible with demographic and life-history attributes. We find no evidence for sex-biased dispersal underlying gene flow asymmetry. Our findings caution against generalizations concerning the directionality of gene flow in Atlantic salmon and emphasize the need for detailed regional study, if such information is to be meaningfully applied in conservation and management of salmonids.  相似文献   

6.
Reintroduction of populations of endangered species is a challenging task, involving a number of environmental, demographic and genetic factors. Genetic parameters of interest include historical patterns of genetic structure and gene flow. Care must be taken during reintroduction to balance the contrasting risks of inbreeding and outbreeding depression. The Mauna Loa silversword, Argyroxiphium kauense, has experienced a severe decline in population size and distribution in the recent past. Currently, three populations with a total of fewer than 1000 individuals remain. We measured genetic variation within and among the remnant populations using seven microsatellite loci. We found significant genetic variation remaining within all populations, probably related to the recent nature of the population impact, the longevity of the plants, and their apparent self-incompatibility. We also found significant genetic differentiation among the populations, reinforcing previous observations of ecological and morphological differentiation. With respect to reintroduction, the results suggest that, in the absence of additional data to the contrary, inbreeding depression may not be a substantial risk as long as propagules for the founding of new populations are adequately sampled from within each source population before additional inbreeding takes place. The results further suggest that if mixing of propagules from different source populations is not required to increase within-population genetic variation in the reintroduced populations, it may best be avoided.  相似文献   

7.
Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.  相似文献   

8.
The European wild rabbit (Oryctolagus cuniculus) lives in stable, territorial breeding groups, with male-biased natal dispersal, female philopatry, and a polygynous mating system. It was introduced into Britain in the 11 th century and kept in captive warrens as a food and fur resource. Populations expanded in the wild in the 18th century. Microsatellite markers were employed to examine the genetic structure of wild rabbit populations on three spatial scales: macrogeographic structure of 17 populations in East Anglia, microgeographic structure of a tagged population in the grounds of the University of East Anglia over four consecutive years, and pairwise kinships and individual movement within this tagged population. Populations across East Anglia were found to be genetically distinct, and heterozygote deficits were observed at all loci indicating sub-division within sampled populations. Analysis of the tagged population confirmed that rabbit populations are genetically sub-divided among social groups. Studying this population over four consecutive years revealed that as the population size increased, the number of social groups increased. Analysis of individual pairwise relatedness of females indicated that individuals did not necessarily group with kin, and behavioural data indicate that an optimum group size may exist which maximizes reproductive success.  相似文献   

9.
Out of 72 fox skulls ( Vulpes vulpes L.) collected in the North Holland Dune Reserve (NHD) between 1979 and 1985, 12 (16.7%) skulls showed a pronounced protrusion of the maxillary incisors over the mandibular incisors. Comparison of dimensions of affected and normal skulls revealed that this protrusion was the effect of a shortening of the front part of the mandibles. The mode of inheritance of this aberration is thought to be under recessive monogenetic control. This was deduced from the family relations between individual foxes radio-collared or earmarked during five years of ecological research, and from the clear bimodal distribution in mandible length. The high incidence of the aberration can be explained by the history of the fox population in the NHD. Before 1968 the NHD was not inhabited by foxes as a result of its ecological isolation. It is rumoured that in that year four cubs, probably from one litter, were set free. It is believed, therefore, that the present population has originated from a small and isolated gene pool. Compared to normal foxes, affected animals are likely to be at an ecological disadvantage. Hence it is expected that the incidence of the aberration will decline in the future, since the population density reached a stable maximum around 1982 and the selective forces against the aberration will presumably be stronger now than during the phase of rapid population growth.  相似文献   

10.
The Landes de Gascogne forest (southwestern France) is the largest maritime pine ( Pinus pinaster ) plantation in Europe. Armillaria root disease ( Armillaria ostoyae ) has been reported since the early 1920s in the coastal area (western sector), but its incidence over the last 20 years has increased in the eastern sector. We investigated the genetic structure of the A. ostoyae population in this forest, focusing particularly on geographical differentiation potentially indicative of disease expansion in this area. In total, 531 isolates obtained from mycelial fans on symptomatic trees or undecayed stumps in 31 different disease foci were genotyped at five microsatellite loci. In 20 of these disease foci, a single genotype dominated, reflecting a predominantly clonal local spread of A. ostoyae . By contrast, at the regional scale, A. ostoyae probably spreads mostly via basidiospores (sexual spores), as no genotype common to several disease foci was identified. The absence of a clear pattern of isolation by distance may indicate either substantial gene flow or stochastic colonisation independent of spatial distance. The gradient of genetic diversity from the coast inwards and the greater genetic divergence of the eastern disease foci are consistent with the expansion of the A. ostoyae population from the coast eastwards.  相似文献   

11.
Population genetic structure in the presence of substantial dispersal provides a unique perspective on the evolution of reproductive isolation. We sampled Telmatherina antoniae, an endemic fish species, at 10 sites in Lake Matano, Indonesia. Significant genetic structure (FST = 0.03) was found, despite a migration rate of 10.2% and a mean dispersal distance of 13.6 km, estimated by genotype assignment. Neither dispersal distance nor direction differed from random expectations, indicative of no dispersal barrier in Lake Matano. However, Bayesian genotype cluster assignment identified a population structure consisting of four to six clusters that did not coincide with sample site distribution, but explained two to three times more genetic variance than sample site. The mechanism for continued isolation of those genetic clusters is unknown, but assortative mating and temporal isolation are obvious candidates. Our results resolve the apparent paradox of population genetic structure coupled with frequent dispersal, and highlight the importance of considering cryptic genetic structure.  相似文献   

12.
Genetic population structure throughout the Caribbean Basin for one of the most common and widespread reef fish species, the bicolour damselfish Stegastes partitus was examined using microsatellite DNA markers. Spatial autocorrelation analysis showed a significant positive correlation between genetic and geographic distance (isolation by distance) over distances <1000 km, suggesting that populations are connected genetically but probably not demographically, i.e. over shorter time scales. A difference in spatial patterns of populations in the eastern v. the western Caribbean also raises the probability of an important role for meso-scale oceanographic features and landscape complexity within the same species. A comparison of S. partitus population structure and life-history traits with those of two other species of Caribbean reef fish studied earlier showed the findings to be concordant with a common hypothesis that shorter pelagic larval dispersal periods are associated with smaller larval dispersal scales.  相似文献   

13.
全面了解中国乌骨鸡的遗传背景有利于保护和开发利用其种质资源。本研究测定了中国12个乌骨鸡品种线粒体细胞色素c氧化酶亚基I (cytochrome c oxidase subunit I, COI)基因, 比较分析其遗传多样性和群体遗传结构。255份乌骨鸡样品共检测到22个变异位点, 占分析位点的3.17%; 核苷酸多样性为0.00142-0.00339, 单倍型多样性为0.380-0.757, 其中略阳乌鸡核苷酸多样性最高, 德化黑鸡最低。检测到7个氨基酸变异位点, 来自6个品种共11个个体。定义了24种单倍型, 其中单倍型H1和H3为12个乌骨鸡品种共享, 出现频率分别为115次和64次; 盐津乌骨鸡单倍型数最多, 广西乌鸡最少。中性检验与错配分析显示实验种群未经历显著的群体扩张事件。分子变异分析显示81.06%的变异来自群体内; 品种间遗传距离为0.002-0.004, 品种间遗传分化系数Fst值为-0.035至0.594, 雪峰乌骨鸡与其他种群间的遗传分化程度最高。邻接树显示, 乌骨鸡未能独立形成分支, 不能从家鸡和红原鸡中有效区分开来。中国乌骨鸡中介网络图将24个单倍型分为3条进化主支, 呈现出一定的品种特异性, 由无量山乌骨鸡、云南盐津乌骨鸡和雪峰乌骨鸡组成单倍型H8、H9、H11、H12游离于这3条进化主支之外。增加其他家鸡和红原鸡COI基因的中介网络图主体结构与中国乌骨鸡的相同。结果表明中国乌骨鸡品种遗传多样性较低, 但品种间遗传分化显著, 可能是从当地家鸡中选育而来, 需要加强种质资源的保护。  相似文献   

14.
Effective population size (Ne) is a key parameter to understand evolutionary processes and the viability of endangered populations as it determines the rate of genetic drift and inbreeding. Low Ne can lead to inbreeding depression and reduced population adaptability. In this study, we estimated contemporary Ne using genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) as well as a demographic estimator in a natural insular house sparrow metapopulation. We investigated whether population characteristics (population size, sex ratio, immigration rate, variance in population size and population growth rate) explained variation within and among populations in the ratio of effective to census population size (Ne/Nc). In general, Ne/Nc ratios increased with immigration rates. Genetic Ne was much larger than demographic Ne, probably due to a greater effect of immigration on genetic than demographic processes in local populations. Moreover, although estimates of genetic Ne seemed to track Nc quite well, the genetic Ne‐estimates were often larger than Nc within populations. Estimates of genetic Ne for the metapopulation were however within the expected range (<Nc). Our results suggest that in fragmented populations, even low levels of gene flow may have important consequences for the interpretation of genetic estimates of Ne. Consequently, further studies are needed to understand how Ne estimated in local populations or the total metapopulation relates to actual rates of genetic drift and inbreeding.  相似文献   

15.
Local populations of Cladophoropsis membranacea exist as mats of coalesced thalli composed of free-living haploid and diploid plants including clonally reproduced plants of either phase. None of the phases are morphologically distinguishable. We used eight microsatellite loci to explore clonality and fine-scale patch structure in C. membranacea at six sites on the Canary Islands. Mats were always composites of many individuals; not single, large clones. Haploids outnumbered diploids at all sites (from 2:1 to 10:1). In both haploid and diploid plants, genetic diversity was high and there was no significant difference in allele frequencies. Significant heterozygote deficiencies were found in the diploid plants at five out of six sites and linkage disequilibrium was associated with the haploid phase at all sites. Short dispersal distances of gametes/spores and small effective population sizes associated with clonality probably contribute to inbreeding. Spatial autocorrelation analysis revealed that most clones were found within a radius of approximately 60 cm and rarely further than 5 m. Dominance of the haploid phase may reflect seasonal shifts in the relative frequencies of haploids and diploids, but may alternatively reflect superiority of locally adapted and competitively dominant, haploid clones; a strategy that is theoretically favoured in disturbed environments. Although sexual reproduction may be infrequent in C. membranacea, it is sufficient to maintain both life history phases and supports theoretical modelling studies that show that haploid-diploid life histories are an evolutionarily stable strategy.  相似文献   

16.
1. In a region of south‐eastern England, we investigated the hierarchical genetic structure of populations of two stream‐dwelling caddisflies (Trichoptera: Polycentropodidae) with contrasting distributions: Plectrocnemia conspersa inhabits numerous small, patchily distributed seeps and streams, while the confamilial Polycentropus flavomaculatus is found in fewer but larger streams and rivers. We also contrasted the genetic structure of P. conspersa in the lowland south‐east with that in an upland region in the north west. 2. Microsatellite genotypes were obtained from samples of both species taken from a ‘core area’ and at sites 15, 40 and 100 km from this core (two regions for P. conspersa, totalling 45 sites and 1405 larvae; one region for P. flavomaculatus, totalling 10 sites and 269 larvae). 3. The genetic structure of P. conspersa differed in the two regions. In the upland north‐west, significant genetic differentiation was observed at a spatial scale of around 40 km from the core, while there was no structure in the lowland south‐east up to around 100 km. Areas of high altitude did not appear directly to reduce gene flow, whereas other potential landscape barriers, including particular geological formations, large urban areas and the sea had a pronounced effect. 4. Weak genetic differentiation in P. conspersa across large distances, particularly in the lowland south‐east, suggests that it disperses strongly, facilitating gene flow within and between catchments. Conversely, for P. flavomaculatus we found strong genetic differentiation between almost all sites, suggesting that dispersal is much more limited. 5. Greater dispersal in the patchily distributed P. conspersa than in P. flavomaculatus, which occupies larger and presumably more persistent habitats, could be a general feature of other similarly distributed aquatic insects. While higher relief is potentially a partial barrier to dispersal, P. conspersamust have effective gene flow through such apparently inhospitable terrain, perhaps attributable to dispersal between neighbouring small and ephemeral populations. Indeed, its exploitation of headwaters and seeps requires the ability to disperse between such sites. Apparently it cannot, however, overcome more continuous barriers, consisting of large tracts of landscape with few habitable larval sites. Such landscapes, including those created by humans, may have a stronger effect on population connectivity and colonization in the longer term.  相似文献   

17.
The population structure of 'lake‐type' and 'river‐type' sockeye salmon Oncorhynchus nerka , primarily in transboundary rivers in northern British Columbia, was examined with a survey of microsatellite variation. Variation at 14 microsatellite loci was surveyed from c . 3000 lake‐type and 3200 river‐type sockeye salmon from 47 populations in six river drainages in British Columbia. The mean F ST for the 14 microsatellite loci and 47 populations was 0·068, and 0·034 over all river‐type populations. River‐type sockeye salmon were more genetically diverse than lake‐type sockeye salmon, with expected heterozygosity of river‐type sockeye salmon 0·72 and with an average 12·7 alleles observed per locus, whereas expected heterozygosity of lake‐type sockeye salmon was 0·65 with and average 10·5 alleles observed per locus. River drainage of origin was a significant unit of population structure. There was clear evidence of genetic differentiation among river‐type populations of sockeye salmon from different drainages over a broad geographic range in British Columbia.  相似文献   

18.
Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL = 59.5–90.1; Hj = 0.23–0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long‐winged phenotypes (a proxy of recent immigration) across populations on the island of Öland, but not on the mainland. Our data further suggested that the open water separating Öland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.  相似文献   

19.
We examined the patterns of random amplified polymorphic DNA (RAPD) variation among seven Prunus mahaleb (Rosaceae) populations extending over approximately 100 km2 to examine local differentiation in relation to spatial isolation due to both geographical distance and differences in elevation. No less than 51. 4% of the RAPD loci were polymorphic, but very few were fixed and among-population variation accounted for 16.46% of variation in RAPD patterns. Mean gene diversity was 0.1441, with mean Nei's genetic diversity for individual populations ranging between 0.089 and 0.149. Mean GST value across loci was 0.1935 (range, 0.0162-0.4685), giving an average estimate for Nm of 1.191. These results suggest extensive gene flow among populations, but higher GST and lower Nm values relative to other outcrossing, woody species with endozoochorous dispersal, also suggest a process of isolation by distance. The combined effect of both geographical and elevation distances and nonoverlapping flowering and fruiting phenophases on the GST matrix was partially significant, revealing only marginal isolation of the P. mahaleb populations. The matrix correlation between estimated Nm values among populations and the geographical + elevation distance matrices (r = -0.4623, P = 0.07), suggests a marginal trend for more isolated populations to exchange less immigrants. Long-distance seed dispersal by efficient medium-sized frugivorous birds and mammals is most likely associated to the high levels of within-population genetic diversity. However, vicariance factors and demographic bottlenecks (high postdispersal seed and seedling mortality) explain comparatively high levels of local differentiation.  相似文献   

20.
Compared with many terrestrial and freshwater environments, dispersal and interbreeding is generally much less restricted in the marine environment. We studied the tendency for a marine species, the Atlantic cod, to be sub-structured into genetically differentiated populations on a fine geographical scale. We selected a coastal area free of any obvious physical barriers and restricted sampling to a 300-km region, well within the dispersal ability of this species. Screening 10 polymorphic microsatellite loci in 6 samples we detected a weak, but consistent, differentiation at all 10 loci. The average FST over loci was small (0.0023) but highly significant statistically, demonstrating that genetically differentiated populations can arise and persist in the absence of physical barriers or great distance. We found no geographical pattern in the genetic differentiation and there was no apparent trend of isolation by distance along the coastline. These findings lend support to the notion that low levels of differentiation are due to passive transport of eggs or larvae by the ocean currents rather than to adult dispersal, the latter being strongly dependent on distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号