首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Substrate specificity of myosin light chain kinases.   总被引:3,自引:0,他引:3  
Skeletal muscle myosin light chain kinase can phosphorylate myosin light chains isolated from skeletal or smooth muscle. In contrast, smooth muscle myosin light chain kinase specifically phosphorylates light chains isolated from smooth muscle. In this study, we have identified residues within the rabbit smooth and skeletal muscle myosin light chain kinases which may interact with the basic residues that are important substrate determinants in the light chains. Mutation of aspartic acid 270 amino-terminal of the catalytic core of the skeletal muscle myosin light chain kinase increased the Km value for both smooth and skeletal muscle light chains. Although deletions of the analogous region of the smooth muscle myosin light chain kinase (residues 663-678) markedly increased the Km value for light chain, mutation of any single acidic residue within this region did not have a similar effect. Mutation of single residues within the catalytic core of the skeletal muscle (E377 and E421) and smooth muscle (E777 and E821) myosin light chain kinases increased Km values for the smooth muscle light chain at least 35- and 100-fold, respectively. It is proposed that these residues may form ionic interactions with the arginine that is 3 residues amino-terminal of the phosphorylatable serine in the smooth muscle light chain.  相似文献   

2.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

3.
Myosin light chain kinase can be divided into three distinct structural domains, an amino-terminal "tail," of unknown function, a central catalytic core and a carboxy-terminal calmodulin-binding regulatory region. We have used a combination of deletion mutagenesis and monoclonal antibody epitope mapping to define these domains more closely. A 2.95-kilobase cDNA has been isolated that includes the entire coding sequence of rabbit skeletal muscle myosin light chain kinase (607 amino acids). This cDNA, expressed in COS cells encoded a Ca2+/calmodulin-dependent myosin light chain kinase with a specific activity similar to that of the enzyme purified from rabbit skeletal muscle. Serial carboxy-terminal deletions of the regulatory and catalytic domains were constructed and expressed in COS cells. The truncated kinases had no detectable myosin light chain kinase activity. Monoclonal antibodies which inhibit the activity of the enzyme competitively with respect to myosin light chain were found to bind between residues 235-319 and 165-173, amino-terminal of the previously defined catalytic core. Thus, residues that are either involved in substrate binding or in close proximity to a light chain binding site may be located more amino-terminal than the previously defined catalytic core.  相似文献   

4.
The molecular and biochemical properties of myosin light chain kinases from chicken skeletal and smooth muscle were investigated by recombinant DNA techniques. Deletion of the amino-terminal region of either the smooth or skeletal muscle myosin light chain kinase resulted in a decrease in Vmax with no significant change in Km values for light chain substrates. Skeletal/smooth muscle chimeric kinases were inactive when a 65-residue region amino-terminal of the catalytic core was exchanged between the two forms. Changing alanine 494 to glutamic acid within this region in the chicken skeletal muscle myosin light chain kinase increased the Km values for light chains 10-fold. These results are consistent with the hypothesis that the region amino-terminal of the catalytic core in myosin light chain kinases is involved in light chain recognition. A skeletal muscle kinase which contained the smooth muscle calmodulin binding domain remained regulated by Ca2+/calmodulin. Thus, the calmodulin binding domains of smooth and skeletal muscle myosin light chain kinases share structural elements necessary for regulation.  相似文献   

5.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

6.
Myosin light chain kinase was prepared from rabbit skeletal muscle. DEAE-Sephadex, calmodulin-Sepharose 4B affinity gel and Ultrogel AcA 34 were used for the purification. It took 3 days for the preparation, and 6.2 mg of myosin light chain kinase was isolated from 600 g of frozen muscle. The molecular weight of the myosin light chain kinase estimated by sedimentation equilibrium analysis was 103,000 +/- 4,100. The isoelectric point was 5.0. Chemical modification of cysteine residues did not affect the catalytic activity, but modification of tyrosine residues diminished the activity. In order to activate myosin light chain kinase, it was necessary to bind calmodulin in an equimolar ratio and the dissociation constant was estimated to be 3.6 nM. The optimum pH for the catalytic activity was 7.5, and the activity was inhibited by NaCl and KCl. In the presence of 2.74 mg/ml myosin light chain and 75 mM KCl, the catalytic activity was found to be 88 s-1. The Vm and Km at 0.14 M KCl were 100 s-1 and 53 microM, respectively, for the isolated light chain as substrate and 70-80 s-1 and 19 microM for myosin as substrate.  相似文献   

7.
Protein kinase C phosphorylates different sites on the 20,000-Da light chain of smooth muscle heavy meromyosin (HMM) than did myosin light chain kinase (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072). Although protein kinase C incorporates 1 mol of phosphate into 1 mol of 20,000-Da light chain when either HMM or the whole myosin molecule is used as a substrate, it catalyzes the incorporation of up to 3 mol of phosphate/mol of 20,000-Da light chain when the isolated light chains are used as a substrate. Threonine is the major phosphoamino acid resulting from phosphorylation of HMM by protein kinase C. Prephosphorylation of HMM by protein kinase C decreases the rate of phosphorylation of HMM by myosin light chain kinase due to a 9-fold increase of the Km for prephosphorylated HMM compared to that of unphosphorylated HMM. Prephosphorylation of HMM by myosin light chain kinase also results in a decrease of the rate of phosphorylation by protein kinase C due to a 2-fold increase of the Km for HMM. Both prephosphorylations have little or no effect on the maximum rate of phosphorylation. The sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C results in a decrease in actin-activated MgATPase activity due to a 7-fold increase of the Km for actin over that observed with phosphorylated HMM by myosin light chain kinase but has little effect on the maximum rate of the actin-activated MgATPase activity. The decrease of the actin-activated MgATPase activity correlates well with the extent of the additional phosphorylation of HMM by protein kinase C following initial phosphorylation by myosin light chain kinase.  相似文献   

8.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

9.
Myosin light chain kinase, which is located primarily in the soluble fraction of bovine myocardium, has been isolated and purified approximately 1200-fold with 16% yield by a three-step procedure. The approximate content of soluble myosin light chain kinase in heart is calculated to be 0.63 microM. The isolated kinase is active only as a ternary complex consisting of the kinase, calmodulin, and Ca2+; the apparent Kd for calmodulin is 1.3 nM. The enzyme also exhibits a requirement for Mg2+ ions. Myosin light chain kinase is a monomeric enzyme with Mr = 85,000. The enzyme exhibits a Km for ATP of 175 microM, and a K0.5 for the regulatory light chain of cardiac myosin of 21 microM. The optimum pH is 8.1. Kinase activity is specific for the regulatory light chain of myosin. The specific activity of the isolated enzyme (30 nmol 32P/min/mg of protein) is considerably less than and corresponding values reported for the skeletal and smooth muscle light chain kinases. This is probably due to proteolysis during extraction of the myocardium, a phenomenon which has, as yet, proven impossible to eliminate. In contrast to the smooth muscle enzyme (Adelstein, R.S., Conti, M.A., Hathaway, D.R., and Klee, C.B. (1978) J. Biol. Chem. 253, 8347-8350), the cardiac kinase is not phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

10.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

11.
Purified myosin light chain kinases from skeletal muscle are reported to be significantly smaller (Mr = 75,000-90,000) than the kinases purified from smooth muscle (Mr = 130,000-155,000). It has been suggested that the smaller kinases from striated muscle are proteolytic fragments of a larger enzyme which is homologous, if not identical, to myosin light chain kinase from smooth muscle. Therefore, we have used an antiserum to rabbit skeletal muscle myosin light chain kinase and Western blot analysis to compare the subunit molecular weight of the kinase in skeletal muscle extracts of several mammalian species. In rabbit skeletal muscle, the antiserum only recognized a polypeptide of Mr = 87,000, with no indication that this polypeptide was a proteolyzed fragment of a larger protein. The apparent molecular weights observed in different animal species were 75,000 (mouse), 83,000 (guinea pig), 82,000 (rat), 87,000 (rabbit), 100,000 (dog), and 108,000 (steer). The molecular weight of myosin light chain kinase was constant within an animal species, regardless of skeletal muscle fiber type. The antiserum inhibited the catalytic activity of skeletal muscle myosin light chain kinase. Similar antibody dilution curves for inhibition of myosin light chain kinase activity in extracts were observed for all animal species (rabbit, rat, mouse, guinea pig, dog, cat, steer, and chicken) and different fibers (slow twitch oxidative, fast twitch oxidative glycolytic, and fast twitch glycolytic) tested. The antiserum did not inhibit the activity of rabbit smooth muscle myosin light chain kinase. These results suggest that there may be at least two classes of muscle myosin light chain kinase represented in skeletal and smooth muscles, respectively.  相似文献   

12.
The dephosphorylation of the myosin light chain kinase and protein kinase C sites on the 20 kDa myosin light chain by myosin phosphatase was investigated. The myosin phosphatase holoenzyme and catalytic subunit, dephosphorylated Ser-19, Thr-18 and Thr-9, but not Ser-1/Ser-2. The role of noncatalytic subunits in myosin phosphatase was to activate the phosphatase activity. For Ser-19 and Thr-18, this was due to a decrease in Km and an increase in k(cat) and for Thr-9 to a decrease in Km. Thus, the distinction between the various sites is a property of the catalytic subunit.  相似文献   

13.
J R Sellers  E V Harvey 《Biochemistry》1984,23(24):5821-5826
It has previously been shown that the regulatory light chains of myosin from Limulus, the horseshoe crab, can be phosphorylated either by purified turkey gizzard smooth muscle myosin light chain (MLC) kinase or by a crude kinase fraction prepared from Limulus muscle [Sellers, J. R. (1981) J. Biol. Chem. 256, 9274-9278]. This phosphorylation was shown to be associated with a 20-fold increase in the actin-activated MgATPase activity of the myosin. We have now purified the Ca2+-calmodulin-dependent MLC kinase from Limulus muscle to near homogeneity by using a combination of low ionic strength extraction, ammonium sulfate fractionation, and chromatography on Sephacryl S-300 and DEAE-Sephacel. The final purification was achieved by affinity chromatography on a calmodulin-Sepharose 4B column. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed 95% of the protein to be comprised of a doublet with Mr = 39000 and 37000. Electrophoresis of the kinase fraction under nondenaturing conditions resulted in a partial separation of the two major bands and demonstrated that each had catalytic activity. An SDS-polyacrylamide gel overlayed with 125I-calmodulin demonstrated that both the Mr 39K and the Mr 37K proteins bind calmodulin. Neither of the bands could be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. With Limulus myosin light chains as a substrate, the Vmax was 15.4 mumol min-1 mg-1, and the Km was 15.6 microM. The KD for calmodulin was determined to be 6 nM. The enzyme did not phosphorylate histones, casein, actin, or tropomyosin.  相似文献   

14.
Several allosterically modulated protein kinases have been shown to be regulated by an autoinhibitory domain located within the kinase molecules. The inhibitory domain has been proposed to act as a "pseudosubstrate" inhibitor binding to the substrate binding site of the kinase, thereby blocking the binding of the enzyme's true substrate. In this report, site-directed mutagenesis has been used to further investigate the mechanism of activation of the inhibitory domain of rabbit skeletal muscle myosin light chain kinase. Basic residues within the pseudosubstrate domain (572-573, 577-579, 580-581), which are analogous to the important substrate determinants of the myosin light chain, were found not to be required in order to maintain the kinase in an inhibited state. Two groups of these residues (577-579 and 581-582) were, however, found to be important for high affinity calmodulin binding to the kinase. These data suggest that the autoinhibitory domain of myosin light chain kinase may not function by directly mimicking the light chain substrate.  相似文献   

15.
A full-length cDNA corresponding to the Dictyostelium myosin light chain kinase gene has been isolated and characterized. Sequence analysis of the cDNA confirms conserved protein kinase subdomains and reveals that the Dictyostelium sequence is highly homologous to those of calcium/calmodulin-dependent protein kinases, including myosin light chain kinases from higher eukaryotes. Despite the high homologies to calcium/calmodulin-dependent protein kinases, there is no recognizable calmodulin-binding domain within the Dictyostelium sequence. However, the Dictyostelium myosin light chain kinase possesses a putative auto-inhibitory domain near its carboxyl terminus. To further characterize this domain, the full-length enzyme as well as a truncated form lacking this domain were expressed in bacterial cells and purified. The full-length enzyme expressed in bacteria exhibits essentially the same biochemical characteristics as the enzyme isolated from Dictyostelium. The truncated form however exhibits a Vmax that is approximately ten times greater than that of the native enzyme. In addition, unlike the native kinase and the full-length kinase expressed in bacteria, the truncated enzyme does not undergo autophosphorylation. These results suggest that the Dictyostelium enzyme, like myosin light chain kinases from higher eukaryotes, is regulated by an autoinhibitory domain but that the specific molecular signals necessary for activation of the Dictyostelium enzyme are entirely distinct.  相似文献   

16.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

17.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

18.
A 5.6-kilobase cDNA clone has been isolated which includes the entire coding region for the myosin light chain kinase from rabbit uterine tissue. This cDNA, expressed in COS cells, encodes a Ca2+/calmodulin-dependent protein kinase with catalytic properties similar to other purified smooth muscle myosin light chain kinases. A module (TLKPVGNIKPAE), repeated sequentially 15 times, has been identified near the N terminus of this smooth muscle kinase. It is not present in chicken gizzard or rabbit skeletal muscle myosin light chain kinases. This repeat module and a subrepeat (K P A/V) are similar in amino acid content to repeated motifs present in other proteins, some of which have been shown to associate with chromatin structures. Immunoblot analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, used to compare myosin light chain kinase present in rabbit, bovine, and chicken smooth and nonmuscle tissues, showed that within each species both tissue types have myosin light chain kinases with indistinguishable molecular masses. These data suggest that myosin light chain kinases present in smooth and nonmuscle tissues are the same protein.  相似文献   

19.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

20.
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号