首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex technique for pulmonary circulation study involving catheterization of pulmonary artery and transbronchial electroplethysmography has been tested in rats. The technique permits pulmonary artery pressure measurement and registration of electrical resistance in the lung lobe of closed-chest animals with the subsequent estimation of blood flow, blood volume and air content in the lungs expressed in adequate units per unit of organ volume. The experimental data characterizing standard values of the above parameters in rats are presented.  相似文献   

2.
In experiments on anaesthetized cats with intact chest regional blood volume and flow in the lungs at horizontal and vertical body positions and under vagus and sympathetic nerve stimulation were studied using regional lung electroplethysmography. The regions of the lungs bearing more significant hydrostatic and hemodynamic load turn more labile to neurogen stimuli. The parasympathetic vasomotor reaction of the basal lung regions increases while the apical region reaction decreases at a vertical body position. The results obtained suggest the occurrence of regionally differentiated mechanisms of vasomotor control in the pulmonary circulation, directed to compensation of postural changes in pulmonary hemodynamics.  相似文献   

3.
Obesity alters regional ventilation in lateral decubitus position   总被引:1,自引:0,他引:1  
Alterations of regional ventilation were determined as a function of body position in five morbidly obese subjects using 81mKr to assess ventilation (V) and 127Xe at equilibrium to determine lung volume (V). With subjects in seated and supine positions, the left lung contributed an average of 43% of the total V/V. When the apical-basal gradient within each lung was examined in subjects in the seated position, V/V was greatest in the dependent (basal) regions in half of the subjects, whereas the others showed greater V/V near the upper lung regions. All obese subjects preferentially ventilated the nondependent lung in both the left and right lateral decubitus positions. In a control group of three nonobese subjects, V/V was found to be equally distributed between left and right lungs in both the seated and supine positions. In contrast with the results in the obese group, V/V was slightly greater in the dependent lung in both lateral decubitus positions. Although the combination of 127Xe images and He-dilution measurement of functional residual capacity in the lateral decubitus positions indicated a reduction in the volume of the dependent lung of the obese when compared with values in the seated position, other factors affecting the mechanical function of either the diaphragm or the intercostal muscles could also have produced these positional alterations of ventilation.  相似文献   

4.
The Dynamic Spatial Reconstructor (DSR) was used to study in vivo lung geometry and function. By replacing the lungs of three dogs with potato flakes and ping-pong balls of known air content and scanning these realistic phantoms in the DSR we have estimated accuracy of lung density to be within 7% and have demonstrated a high (+/- 3%) internal consistency (relative density within dogs). Change in total lung air content (y) as calculated from DSR volume imaging of anesthetized dogs matched the known inflation steps (x) to within 7% [range was 1-7% with a mean of 3 +/- 0.5% (SE)]. A gradient of decreasing percent lung air content was measured in the ventral-dorsal direction at functional residual capacity (FRC) in the supine body posture (y = 3.29% air content/cm lung height + 46.48% air content; r = 0.90). Regional lung air content change with lung inflation was greatest in the dependent lung regions. In contrast, regional lung air content at FRC was approximately uniform along the ventral-dorsal direction with the dog in the prone posture and was 66 +/- 0.6% (SE). Ventral-dorsal gradients in lung air content measured within an isogravimetric plane of the dogs in the left or right lateral body posture suggest that regional differences in lung air content cannot be explained solely on the basis of a direct gravitational effect on the lung. Evidence is presented to suggest a possible major role of the intrathoracic position of the mediastinal contents in determining these lung air content distributions.  相似文献   

5.
We have previously demonstrated appreciable inhomogeneity of alveolar pressures measured by a capsule technique in excised canine lobes deflated at submaximal flows (J. Appl. Physiol. 65: 1757-1765, 1988). We further analyzed the results of these experiments by estimating alveolar volumes (VA) and regional flows from regional transpulmonary pressures, assuming that regional pressure-volume relationships were homogeneous. Deflation at submaximal flows of lungs suspended in air caused significant flow-dependent inhomogeneity of VA that increased as lung volume decreased. Immersion of lungs in stable foams that simulated the gradient of pleural pressure modified the pattern of emptying, but not always to a gravity-dependent sequence. Limitation of regional expiratory flow was often asynchronous during both air suspension and foam immersion. There was no evidence of a common regional flow-volume curve. Submaximal deflation is a complex heterogeneous process, with the interregional pattern of emptying determined by the interaction of factors that are both intrinsic and extrinsic to the lungs.  相似文献   

6.
The purpose of this study was to determine the effect of the absence of a pleural pressure gradient (simulating the presumed condition found in microgravity) upon regional expansion of the lung. We attempted to produce a uniform pressure over the surface of the lung by suspending excised lungs in air. Such studies should help determine whether or not absence of a pleural pressure gradient leads to uniform ventilation. A preparation in which there is no pleural pressure gradient should also be useful in studying non-gravitational effects on ventilation distribution.  相似文献   

7.
Pulmonary hemodynamics in anesthetized rats was studied during long-term residence (2,5 and 10 months) at high altitude (3,200 m, Tien Shan). Transbronchial regional electroplethysmography and catheterization of pulmonary artery was used. It has been shown that at all periods of adaptation there was increased systolic pressure in pulmonary artery and practically unchanged diastolic one. Some regional redistributions of pulmonary blood flow and blood volume for five different lung parts were demonstrated. Hemoglobin content in erythrocytes was steadily increased while specific electric blood resistance, hematocrit, and number of erythrocytes did not change so significantly. The role of pulmonary arterial hypertension and changes of other studied indices of hemodynamics and red blood in adaptation to chronic high-altitude hypoxia are being discussed.  相似文献   

8.
A recently developed method for quantitative assessment of regional lung ventilation was employed for the study of posture-dependent ventilation differences in rats. The measurement employed hyperpolarized (3)He MRI to detect the build-up of the signal intensity after increasing numbers of (3)He breaths, which allowed for computation of a regional ventilation parameter. A group of six anesthetized rats was studied in both supine and prone postures. Three-dimensional maps of the ventilation parameter were obtained with high spatial resolution (voxel volume approximately 2 mm(3)). Vertical (dorsal-ventral) gradients of the ventilation index, defined as the regional ventilation normalized by the average ventilation within the whole lung, were investigated. Variations in the regional distribution of the ventilation parameter, as well as of the ventilation index, could be detected, depending on the posture of the rats. In supine posture, ventilation was elevated in the dependent parts of the lungs, with a linear gradient of the ventilation index of -0.11 +/- 0.03 cm(-1). In prone posture, the distribution of ventilation was more uniform, with a significantly (P < 0.001) smaller gradient of the ventilation index of -0.01 +/- 0.02 cm(-1). It is concluded that the (3)He MRI-based method can detect and quantify regional ventilation gradients in animals as small as the rat and that these gradients depend on prone or supine posture of the animal.  相似文献   

9.
To confirm the regional differences in vascular pressure vs. flow properties of lung regions that have been documented in zone 2 conditions [pulmonary venous pressure (Ppv) less than alveolar pressure], regional distending pressure vs. flow curves in zone 3 were generated by use of isolated blood-perfused dog lungs (3 right and 5 left lungs). Each lung was kept inflated at constant inflation pressure (approximately 50% of full inflation volume) while radioactively labeled microspheres were injected at different settings of Ppv. To achieve maximal vascular distension, Ppv was increased to approximately 30 cmH2O above alveolar pressure for the first injection. Subsequent injections were made at successively lower Ppv's. The difference between pulmonary arterial pressure and Ppv was kept constant for all injections. As was found in zone 2 conditions, there were differences in the regional distending pressure vs. flow curves among lung regions. To document the regional variability in the curves, the distribution of flow at a regional Ppv of 30 cmH2O above alveolar pressure was analyzed. There was a statistically significant linear gradient in this flow distribution from dorsal to ventral regions of the lungs but no consistent gradient in the caudad to cephalad direction. These results indicate that, even in near-maximally distended vessels, the dorsal regions of isolated perfused dog lungs have lower intrinsic vascular resistance compared with ventral regions.  相似文献   

10.
We determined regional (Vr) and overall lung volumes in six head-up anesthetized dogs before and after the stepwise introduction of saline into the right pleural space. Functional residual capacity (FRC), as determined by He dilution, and total lung capacity (TLC) decreased by one-third and chest wall volume increased by two-thirds the saline volume added. Pressure-volume curves showed an apparent increase in lung elastic recoil and a decrease in chest wall elastic recoil with added saline, but the validity of esophageal pressure measurements in these head-up dogs is questionable. Vr was determined from the positions of intraparenchymal markers. Lower lobe TLC and FRC decreased with added saline. The decrease in upper lobe volume was less than that of lower lobe volume at FRC and was minimal at TLC. Saline increased the normal Vr gradient at FRC and created a gradient at TLC. During deflation from TLC to FRC before saline was added, the decrease in lung volume was accompanied by a shape change of the lung, with greatest distortion in the transverse (ribs to mediastinum) direction. After saline additions, deflation was associated with deformation of the lung in the cephalocaudal and transverse directions. The deformation with saline may be a result of upward displacement of the lungs into a smaller cross-sectional area of the thoracic cavity.  相似文献   

11.
Application of respiratory heat exchange for the measurement of lung water.   总被引:2,自引:0,他引:2  
A noninvasive method for measuring pulmonary blood flow and lung mass (called airway thermal volume), based on the measurements of lung heat exchange with environment, is described. The lungs function as a steady-state heat exchange system, having an inner heat source (pulmonary blood flow) and an external heat sink (ventilation). Sudden changes in the steady-state condition, such as caused by hyperventilation of dry air, lead to a new steady state after a few minutes. The expired air temperature difference between the initial and final steady states is proportional to pulmonary blood flow, whereas the rate at which the new steady state is achieved is proportional to airway thermal volume. The method was tested in 20 isolated dogs lungs, 9 perfused goat lungs, and 27 anesthetized sheep. The expired air temperature fall during hyperventilation was inversely proportional to the perfusion rate of the isolated lungs, and half-time of the temperature fall was proportional to the lung tissue mass. Experiments in anesthetized sheep showed that the measured airway thermal volume is close to the total mass of the excised lungs, including its residual blood (r = 0.98). Pulmonary edema and fluid instillation into the bronchial tree increased in the measured lung mass.  相似文献   

12.

Background

Near the end of the nineteenth century the hypothesis was presented for the homology of book lungs in arachnids and book gills in the horseshoe crab. Early studies with the light microscope showed that book gill lamellae are formed by outgrowth and possibly some invagination (infolding) of hypodermis (epithelium) from the posterior surface of opisthosomal limb buds. Scorpion book lungs are formed near the bilateral sites of earlier limb buds. Hypodermal invaginations in the ventral opisthosoma result in spiracles and sac-like cavities (atria). In early histological sections of embryo book lungs, widening of the atrial entrance of some lamellae (air channels, air sacs, saccules) was interpreted as an indication of invagination as hypothesized for book gill lamellae. The hypodermal infolding was thought to produce the many rows of lamellar precursor cells anterior to the atrium. The ultrastructure of scorpion book lung development is compared herein with earlier investigations of book gill formation.

Results

In scorpion embryos, there is ingression (inward migration) of atrial hypodermal cells rather than invagination or infolding of the atrial hypodermal layer. The ingressing cells proliferate and align in rows anterior to the atrium. Their apical-basal polarity results in primordial air channels among double rows of cells. The cuticular walls of the air channels are produced by secretion from the apical surfaces of the aligned cells. Since the precursor cells are in rows, their secreted product is also in rows (i.e., primordial air channels, saccules). For each double row of cells, their opposed basal surfaces are gradually separated by a hemolymph channel of increasing width.

Conclusions

The results from this and earlier studies show there are differences and similarities in the formation of book lung and book gill lamellae. The homology hypothesis for these respiratory organs is thus supported or not supported depending on which developmental features are emphasized. For both organs, when the epithelial cells are in position, their apical-basal polarity results in alternate page-like channels of hemolymph and air or water with outward directed hemolymph saccules for book gills and inward directed air saccules for book lungs.  相似文献   

13.
Understanding regional deformation in the lung has long attracted the medical community, as parenchymal deformation plays a key role in respiratory physiology. Recent advances in image registration make it possible to noninvasively study regional deformation, showing that volumetric deformation in healthy lungs follows complex spatial patterns not necessarily shared by all subjects, and that deformation can be highly anisotropic. In this work, we systematically study the regional deformation in the lungs of eleven human subjects by means of in vivo image-based biomechanical analysis. Regional deformation is quantified in terms of 3D maps of the invariants of the right stretch tensor, which are related to regional changes in length, surface and volume. Based on the histograms of individual lungs, we show that log-normal distributions adequately represent the frequency distribution of deformation invariants in the lung, which naturally motivates the normalization of the invariant fields in terms of the log-normal score. Normalized maps of deformation invariants allow for a direct intersubject comparison, as they display spatial patterns of deformation in a range that is common to all subjects. For the population studied, we find that lungs in supine position display a marked gradient along the gravitational direction not only for volumetric but also for length and surface regional deformation, highlighting the role of gravity in the regional deformation of normal lungs under spontaneous breathing.  相似文献   

14.
We aimed to assess the influence of lateral decubitus postures and positive end-expiratory pressure (PEEP) on the regional distribution of ventilation and perfusion. We measured regional ventilation (VA) and regional blood flow (Q) in six anesthetized, mechanically ventilated dogs in the left (LLD) and right lateral decubitus (RLD) postures with and without 10 cmH(2)O PEEP. Q was measured by use of intravenously injected 15-microm fluorescent microspheres, and VA was measured by aerosolized 1-microm fluorescent microspheres. Fluorescence was analyzed in lung pieces approximately 1.7 cm(3) in volume. Multiple linear regression analysis was used to evaluate three-dimensional spatial gradients of Q, VA, the ratio VA/Q, and regional PO(2) (Pr(O(2))) in both lungs. In the LLD posture, a gravity-dependent vertical gradient in Q was observed in both lungs in conjunction with a reduced blood flow and Pr(O(2)) to the dependent left lung. Change from the LLD to the RLD or 10 cmH(2)O PEEP increased local VA/Q and Pr(O(2)) in the left lung and minimized any role of hypoxia. The greatest reduction in individual lung volume occurred to the left lung in the LLD posture. We conclude that lung distortion caused by the weight of the heart and abdomen is greater in the LLD posture and influences both Q and VA, and ultimately gas exchange. In this respect, the smaller left lung was the most susceptible to impaired gas exchange in the LLD posture.  相似文献   

15.
We performed the quasi-static single-breath oxygen test (SBO2) in 16 excised canine lower lung lobes while the lobes were first suspended in air and then later immersed in stable foams that provided a vertical transpulmonary pressure gradient. In lobes suspended in air, an approximately linear alveolar plateau (AP) was obtained. The AP during foam immersion was markedly curvilinear, with phase IV seen at end expiration. The observed AP during foam immersion could be predicted by a mathematical model that assumed a homogeneous transpulmonary pressure-regional volume relationship equal to the overall pressure-volume (PV) relationship measured with the lobe suspended in air. The accuracy of this model was further confirmed by measuring the washout of nitrogen injected into different lung regions through alveolar capsules. We also used the model to examine the relationship between the onset of dependent airway closure and two of its proposed indicators: the onset of phase IV and the inflection point of the overall PV relationship. In most lobes, the lung volume at the onset of phase IV was less than the modeled lung volume at dependent airway closure. The lung volume at the inflection point was always less than the modeled lung volume at dependent airway closure. We show that the overall PV relationship measured in lobes suspended in air provides an accurate estimate of regional PV relationships during foam immersion.  相似文献   

16.
Inflammation during mechanical ventilation is thought to depend on regional mechanical stress. This can be produced by concentration of stresses and cyclic recruitment in low-aeration dependent lung. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) allows for noninvasive assessment of regional metabolic activity, an index of neutrophilic inflammation. We tested the hypothesis that, during mechanical ventilation, surfactant-depleted low-aeration lung regions present increased regional (18)F-FDG uptake suggestive of in vivo increased regional metabolic activity and inflammation. Sheep underwent unilateral saline lung lavage and were ventilated supine for 4 h (positive end-expiratory pressure = 10 cmH(2)O, tidal volume adjusted to plateau pressure = 30 cmH(2)O). We used PET scans of injected (13)N-nitrogen to compute regional perfusion and ventilation and injected (18)F-FDG to calculate (18)F-FDG uptake rate. Regional aeration was quantified with transmission scans. Whole lung (18)F-FDG uptake was approximately two times higher in lavaged than in nonlavaged lungs (2.9 ± 0.6 vs. 1.5 ± 0.3 10(-3)/min; P < 0.05). The increased (18)F-FDG uptake was topographically heterogeneous and highest in dependent low-aeration regions (gas fraction 10-50%, P < 0.001), even after correction for lung density and wet-to-dry lung ratios. (18)F-FDG uptake in low-aeration regions of lavaged lungs was higher than that in low-aeration regions of nonlavaged lungs (P < 0.05). This occurred despite lower perfusion and ventilation to dependent regions in lavaged than nonlavaged lungs (P < 0.001). In contrast, (18)F-FDG uptake in normally aerated regions was low and similar between lungs. Surfactant depletion produces increased and heterogeneously distributed pulmonary (18)F-FDG uptake after 4 h of supine mechanical ventilation. Metabolic activity is highest in poorly aerated dependent regions, suggesting local increased inflammation.  相似文献   

17.
We measured the regional distribution of pulmonary extravascular and interstitial water to examine the possibility that regional differences in microvascular pressure or tissue stress may cause regional differences in lung water. We placed chloralose-anesthetized dogs in an upright (n = 6) or supine (n = 7) position for 180 min. We injected 51Cr-labeled EDTA to equilibrate to the extracellular space and 125I-labeled albumin to equilibrate with plasma. At the end of the experiment, the lungs were removed, passively drained of blood, and inflated before rapid freezing. Lungs were divided into horizontal slices, and extravascular, interstitial, and plasma water, red cell volume, and dry lung weight were determined for each slice. We found that regional extravascular and interstitial water were constant throughout the lungs in both groups and that there were no significant differences between upright and supine dogs. There were no significant differences in hematocrit between slices. We conclude that gravity and body position have no measurable effect on either the total size of the extravascular and interstitial compartments or their regional distribution.  相似文献   

18.
Xe-enhanced computed tomography (CT; Xe-CT) is a method for the noninvasive measurement of regional pulmonary ventilation in intact subjects, determined from the washin and washout rates of the radiodense, nonradioactive gas Xe, as measured in serial CT scans. We used the Xe-CT ventilation method, along with other quantitative CT measurements, to investigate the distribution of regional lung ventilation and air content in healthy, anesthetized, mechanically ventilated dogs in the prone and supine postures. Vertical gradients in regional ventilation and air content were measured in five mongrel dogs in both prone and supine postures at four axial lung locations. In the supine position, ventilation increased with dependent location, with a mean slope of 7.3%/cm lung height, whereas no ventilation gradients were found at any location in the prone position. These results agree quantitatively with other published studies. In addition, six different animals were studied (3 supine, 3 prone) to examine the longitudinal distribution of ventilation and air content. The prone lungs were more uniformly inflated compared with the supine, which were less well expanded at the base than apex. Ventilation index, a measure of regional ventilation relative to whole lung ventilation, increased steeply from apex to base in the supine animals, whereas it was again more uniform in the prone condition. We conclude that the Xe-CT method provides a reasonable, quantitative measurement of regional ventilation and promises to be a valuable tool for the noninvasive determination of regional lung function.  相似文献   

19.
General anesthesia was used to produce nonventilated areas of the lung, and aerosol inhalation was used to locate these areas, assuming that no aerosol deposits in a nonventilated region. Male Syrian golden hamsters were anesthetized with pentobarbital sodium (90 mg/kg), which reduced respiratory frequency, tidal volume, minute volume, and O2 consumption to 61, 41, 24, and 36%, respectively, of the corresponding awake levels. Awake and anesthetized hamsters were exposed to the aerosol for 30 min; then the lungs were excised, dried at total lung capacity, sliced into sections, and dissected into pieces. Autoradiographs were made of slices, and the activity and weight of pieces were determined. The evenness index (EI), a measure of the uniformity of retention, was calculated for each piece. With complete uniformity of retention, all EI's would be 1.0. In awake animals, only 0.2% (by wt) of the lungs had little or no retention (EI's less than 0.20). More particles deposited in the apex than in the base of the lungs. General anesthesia for extended periods of time with no deep breaths alters ventilation and therefore the distribution of aerosol retention. Many regions of the lungs in the anesthetized animals received few or no particles (11.6% of lungs had EI less than 0.20); however, no consistent pattern was observed in the location of these areas from animal to animal. The apex-to-base gradient for retention in these animals was also reversed. Radioactive aerosols can be used as probes to indicate the extent and distribution of nonventilated areas in the lungs.  相似文献   

20.
Blood volume changes in the fetal lung following the onset of ventilation were studied by isotopic measurement of red blood cell and plasma volume in rapidly frozen lungs of ten near term fetal lambs. Total pulmonary blood volumes of fetal lambs ventilated with 3% O2 and 7% CO2 in nitrogen (so that blood gas levels were little changed from fetal values), or with air, were compared with measurements in unventilated lambs. Regional correlations of blood volume and blood flow (measured with isotope-labeled microemboli) within the lungs were also examined. Total pulmonary blood volume averaged 5.6 ml/kg body weight in unventilated fetal lambs and was approximately 43% greated in fetal lambs after 5-20 min of air ventilation, but not significantly different in lambs ventilated with 3% O2 and 7% CO2 in nitrogen. Thus it is ventilation with air, rather than the introduction of gas into the alveoli, which enlarges the fetal pulmonary vascular bed. Regional pulmonary blood volume and blood flow were correlated, though poorly, in air-ventilated lungs, but not in lungs ventilated with 3% O2 and 7% CO2 in nitrogen; this suggests that a common factor may operate to increase both blood flow and blood volume in the fetal lung following the introduction of air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号