首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of four ligands of the nicotinic acetylcholine receptor with genetically engineered peptides have been studied by NMR. A recombinant cholinergic binding site was prepared as a fusion protein between a truncated form of the bacterial protein trpE and a peptide corresponding to the sequence alpha 184-200 from the Torpedo californica receptor. This construct binds alpha-bungarotoxin while the trpE protein alone does not, and thus serves as a negative control [Aronheim, A., Eshel, Y., Mosckovitz, R., & Gershoni, J. M. (1988) J. Biol. Chem. 263, 9933-9937]. In this study agonist binding to alpha 184-200 is demonstrated by monitoring the T1 relaxation of the ligand's protons in the presence and absence of the recombinant binding site. This binding is specific as it can be competed with alpha-bungarotoxin. Quantitative analyses of such competitions yielded the concentration of binding sites, which corresponded to 3.3% and 16.5% of the total protein, for partially purified and affinity-purified alpha 184-200 constructs, respectively. The KD values for the binding of acetylcholine, nicotine, d-tubocurarine, and gallamine to the affinity-purified construct were 1.4, 1.4, 0.20, and 0.21 mM, respectively, while KD's with the nontoxin binding protein were all above 10 mM. Thus, this is a direct demonstration that the toxin binding domain alpha 184-200 may comprise a major component of the cholinergic agonist site.  相似文献   

2.
A fusion protein consisting of the TrpE protein and residues 166-211 of the Torpedo acetylcholine receptor alpha 1 subunit was produced in Escherichia coli using a pATH10 expression vector. Residues in the Torpedo sequence were changed by means of oligonucleotide-directed mutagenesis to residues present in snake alpha 1 subunit and rat nerve alpha 3 subunit which do not bind alpha-bungarotoxin. The fusion protein of the Torpedo sequence bound 125I-alpha-bungarotoxin with high affinity (IC50 = 2.5 x 10(-8) M from competition with unlabeled toxin, KD = 2.3 x 10(-8) M from equilibrium saturation binding data). Mutation of three Torpedo residues to snake residues, W184F, K185W, and W187S, had no effect on binding. Conversion of two additional Torpedo residues to snake, T191S and P194L, reduced alpha-bungarotoxin binding to undetectable levels. The P194L mutation alone abolished toxin binding. Mutation of three Torpedo alpha 1 residues to neuronal alpha 3-subunit residues, W187E, Y189K, and T191N, also abolished detectable alpha-bungarotoxin binding. Conversion of Try-189 to Asn which is present in the snake sequence (Y189N) abolished toxin binding. It is concluded that in the sequence of the alpha subunit of Torpedo encompassing Cys-192 and Cys-193, Try-189 and Pro-194 are important determinants of alpha-bungarotoxin binding. Tyr-189 may interact directly with cationic groups or participate in aromatic-aromatic interactions while Pro-194 may be necessary to maintain a conformation conductive to neurotoxin binding.  相似文献   

3.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

4.
The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.  相似文献   

5.
Studies were conducted on curaremimetic neurotoxin binding to the nicotinic acetylcholine receptor present on membrane fractions derived from the human medulloblastoma clonal line, TE671. High-affinity binding sites (KD = 2 nM for 1-h incubation at 20 degrees C) and low-affinity binding sites (KD = 40 nM) for 125I-labeled alpha-bungarotoxin are present in equal quantities (60 fmol/mg membrane protein). The kinetically determined dissociation constant for high-affinity binding of toxin is 0.56 nM (k1 = 6.3 X 10(-3) min-1 nM-1; k-1 = 3.5 X 10(-3) min-1) at 20 degrees C. Nicotine, d-tubocurarine, and acetylcholine are among the most effective inhibitors of high-affinity toxin binding. The quantity of toxin binding sites and their affinity for cholinergic agonists is sensitive to reduction, alkylation, and/or oxidation of membrane sulfhydryl residues. High-affinity toxin binding sites that have been subjected to reaction with the sulfhydryl reagent dithiothreitol are irreversibly blocked by the nicotinic receptor affinity reagent bromoacetylcholine. High-affinity toxin binding is inhibited in the presence of either of two polyclonal antisera or a monoclonal antibody raised against nicotinic acetylcholine receptors from fish electric tissue. Taken together, these results indicate that curaremimetic neurotoxin binding sites on membrane fractions of the TE671 cell line share some properties with nicotinic acetylcholine receptors of peripheral origin and with toxin binding sites on other neuronal tissues.  相似文献   

6.
Intact nicotinic acetylcholine receptor (AChR) tightly binds alpha-bungarotoxin. The two toxin-binding sites are presumed to be on the two alpha-subunits, either on or near the ACh-binding sites. Isolated alpha-subunits have been found to maintain weak binding to alpha-bungarotoxin (KD approximately 0.2 microM). We describe here conditions under which the alpha-subunit and a 27,000-dalton proteolytic peptide bound alpha-bungarotoxin with high affinity. The four subunits of Torpedo marmorata AChR, as well as several proteolytic peptides of the alpha-subunit, were first purified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. We found that the purified alpha-subunit (but not the beta-, gamma- or delta-subunits) and its 27,000-dalton peptide specifically bound 125I-labeled alpha-bungarotoxin with KD approximately 3 and 6 nM, i.e., about two orders of magnitude lower than the intact AChR. Nearly 100% of the sites were recovered. The recovery of this high affinity binding required the presence of SDS (approximately 0.02%) but non-denaturing detergents had a strongly inhibitory effect. Unlabeled alpha-toxins competed with labeled alpha-bungarotoxin, alpha-bungarotoxin being more effective than all the other toxins tested. Decamethonium and hexamethonium competed efficiently with alpha-bungarotoxin binding but carbamylcholine had only a weak effect. The main immunogenic region of the AChR was only partially preserved since conformation-dependent monoclonal antibodies to this region bound the alpha subunit-toxin complexes, but much less efficiently than the intact AChR. We conclude that SDS can be advantageous to the recovery of high toxin binding to the alpha subunit which still has not completely recovered its native conformation.  相似文献   

7.
alpha-Bungarotoxin blocks acetylcholine-mediated ion channel opening of peripheral acetylcholine receptors (AChR). A major binding region for alpha-bungarotoxin has been recently identified within parts of the segment 170-204 of the alpha-subunit. We used the Pepscan systematic peptide synthesis system to determine the minimum Torpedo AChR segment required for alpha-bungarotoxin binding and to investigate the role of each residue within this segment. Continuously overlapping decapeptides within alpha 179-203 and several decapeptides covering other alpha-subunit sequences showed that alpha 188-197 and alpha 189-198 exhibited the best 125I-alpha-bungarotoxin binding activity (KD = 7.3 x 10(-8) and 4.3 x 10(-8) M, respectively). Several continuously overlapping nona-, octa-, hepta-, hexa-, and tetrapeptides showed that the heptapeptide alpha 189-195 was the minimum sequence with high binding activity (KD = 5.6 x 10(-8)M). d-Tubocurarine, but not carbamylcholine, blocked toxin binding. Twenty-six analogs of the alpha 188-197, most having 1 residue substituted by Ala or Gly, showed that Tyr189, Tyr190, and especially Asp195 were indispensable for 125I-alpha-bungarotoxin binding. Cys192 and Cys193 could be substituted by other amino acids, proving that the disulfide bond between alpha 192-193 was not required for alpha-bungarotoxin binding. The decreased alpha-bungarotoxin binding capacity of the equivalent human muscle AChR alpha 188-197 peptide was the result of substitution of Tyr by Thr at alpha 189.  相似文献   

8.
A baculovirus transfer vector was constructed containing an entire cDNA copy of the chick nicotinic acetylcholine receptor (nAChR) alpha-subunit under control of the Autographa californica nuclear polyhedrosis virus (AcNPV) polyhedrin gene promoter. Recombinant baculovirus was obtained by co-transfection of Spodoptera frugiperda cells with infectious, wild-type AcNPV DNA and the transfer vector. Polyhedrin-negative, recombinant viruses were identified which expressed the nAChR alpha-subunit. The insect cell-expressed alpha-subunit protein had a molecular mass of 42 kDa and was shown to be targeted to the plasma membrane by fluorescence microscopy and toxin-binding assays. The levels of expression were low, approximately 1-2% of cell proteins, when compared with the levels of natural polyhedrin protein. The expressed receptor alpha-subunit was recognised by polyclonal antisera raised against purified Torpedo nAChR alpha-subunit and carried the binding site for the snake venom toxin, alpha-bungarotoxin. Bound alpha-bungarotoxin was displaced in competition binding assays by alpha-cobra toxin, carbamylcholine and d-tubocurarine, and thus had a similar pharmacological profile to that obtained with authentic receptors in muscle cells and receptors expressed in other systems i.e. Xenopus oocytes and mammalian cells. We have also shown that when the chick nAChR alpha-subunit is expressed in the absence of other receptor subunits, unexpectedly high concentrations of nicotine (10 mM) were required to displace bound alpha-bungarotoxin.  相似文献   

9.
Murine monoclonal antibodies have been produced against a 32 amino acid synthetic peptide corresponding to residues 173-204 on the alpha-subunit of the nicotinic acetylcholine receptor from Torpedo californica. All of the monoclonal antibodies were of the IgM subtype and most cross-reacted with the purified native receptor. None of the antibodies were effective in blocking alpha-bungarotoxin binding to the receptor nor, conversely, did alpha-bungarotoxin interfere with antibody binding. However, two monoclonal antibodies, previously shown to bind near the ligand binding site on the native receptor, did compete partially (50%) with the binding of one of the IgM monoclonal antibodies.  相似文献   

10.
T L Lentz  E Hawrot  P T Wilson 《Proteins》1987,2(4):298-307
Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha-subunit peptide most likely contains all of the determinants for binding of the toxin and glycoprotein peptides present on the alpha-subunit, because these peptides bind to the 32-residue alpha-subunit peptide with the same or greater affinity as to the intact subunit.  相似文献   

11.
Synthetic peptides corresponding to sequence segments of the nicotinic acetylcholine receptor (nAChR) alpha subunits have been used to identify regions that contribute to formation of the binding sites for cholinergic ligands. We have previously defined alpha-bungarotoxin (alpha-BTX) binding sequences between residues 180 and 199 of a putative rat neuronal nAChR alpha subunit, designated alpha 5 [McLane, K. E., Wu, X., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 9816-9824], and between residues 181 and 200 of the chick neuronal alpha 7 and alpha 8 subunits [McLane, K. E., Wu, X., Schoepfer, R., Lindstrom, J., & Conti-Tronconi, B. M. (1991) J. Biol. Chem. (in press)]. These sequences are relatively divergent compared with the Torpedo and muscle nAChR alpha 1 alpha-BTX binding sites, which indicates a serious limitation of predicting functional domains of proteins based on homology in general. Given the highly divergent nature of the alpha 5 sequence, we were interested in determining the critical amino acid residues for alpha-BTX binding. In the present study, the effects of single amino acid substitutions of Gly or Ala for each residue of the rat alpha 5(180-199) sequence were tested, using a competition assay, in which peptides compete for 125I-alpha-BTX binding with native Torpedo nAChR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
alpha-Bungarotoxin, the classic nicotinic antagonist, has high specificity for muscle type alpha1 subunits in nicotinic acetylcholine receptors. In this study, we show that an 11-amino-acid pharmatope sequence, containing residues important for alpha-bungarotoxin binding to alpha1, confers functional alpha-bungarotoxin sensitivity when strategically placed into a neuronal non-alpha subunit, normally insensitive to this toxin. Remarkably, the mechanism of toxin inhibition is allosteric, not competitive as with neuromuscular nicotinic receptors. Our findings argue that alpha-bungarotoxin binding to the pharmatope, inserted at a subunit-subunit interface diametrically distinct from the agonist binding site, interferes with subunit interface movements critical for receptor activation. Our results, taken together with the structural similarities between nicotinic and GABAA receptors, suggest that this allosteric mechanism is conserved in the Cys-loop ion channel family. Furthermore, as a general strategy, the engineering of allosteric inhibitory sites through pharmatope tagging offers a powerful new tool for the study of membrane proteins.  相似文献   

13.
To map the structure of a ligand-gated ion channel, we used the photolabile polyamine-containing toxin MR44 as photoaffinity label. MR44 binds with high affinity to the nicotinic acetylcholine receptor in its closed channel conformation. The binding stoichiometry was two molecules of MR44 per receptor monomer. Upon UV irradiation of the receptor-ligand complex, (125)I-MR44 was incorporated into the receptor alpha-subunit. From proteolytic mapping studies, we conclude that the site of (125)I-MR44 cross-linking is contained in the sequence alpha His-186 to alpha Leu-199, which is part of the extracellular domain of the receptor. This sequence partially overlaps in its C-terminal region with one of the three loops that form the agonist-binding site. The agonist carbachol and the competitive antagonist alpha-bungarotoxin had only minor influence on the photocross-linking of (125)I-MR44. The site where the hydrophobic head group of (125)I-MR44 binds must therefore be located outside the zone that is sterically influenced by agonist bound at the nicotinic acetylcholine receptor. In binding and photocross-linking experiments, the luminal noncompetitive inhibitors ethidium and triphenylmethylphosphonium were found to compete with (125)I-MR44. We conclude that the polyamine moiety of (125)I-MR44 interacts with the high affinity noncompetitive inhibitor site deep in the channel of the nicotinic acetylcholine receptor, while the aromatic ring of this compound binds in the upper part of the ion channel (i.e. in the vestibule) to a hydrophobic region on the alpha-subunit that is located in close proximity to the agonist binding site. The region of the alpha-subunit labeled by (125)I-MR44 should therefore be accessible from the luminal side of the vestibule.  相似文献   

14.
The relationship between neuronal alpha-bungarotoxin binding proteins (alpha BGTBPs) and nicotinic acetylcholine receptor function in the brain of higher vertebrates has remained controversial for over a decade. Recently, the cDNAs for two homologous putative ligand binding subunits, designated alpha BGTBP alpha 1 and alpha BGTBP alpha 2, have been isolated on the basis of their homology to the N terminus of an alpha BGTBP purified from chick brain. In the present study, a panel of overlapping synthetic peptides corresponding to the complete chick brain alpha BGTBP alpha 1 subunit and residues 166-215 of the alpha BGTBP alpha 2 subunits were tested for their ability to bind 125I-alpha BGT. The sequence segments corresponding to alpha BGTBP alpha 1-(181-200) and alpha BGTBP alpha 2-(181-200) were found to consistently and specifically bind 125I-alpha BGT. The ability of these peptides to bind alpha BGT was significantly decreased by reduction and alkylation of the Cys residues at positions 190/191, whereas oxidation had little effect on alpha BGT binding activity. The relative affinities for alpha BGT of the peptide sequences alpha BGTBP alpha 1-(181-200) and alpha BGTBP alpha 2-(181-200) were compared with those of peptides corresponding to the sequence segments Torpedo alpha 1-(181-200) and chick muscle alpha 1-(179-198). In competition assays, the IC50 for alpha BGTBP alpha 1-(181-200) was 20-fold higher than that obtained for the other peptides (approximately 2 versus 40 microM). These results indicate that alpha BGTBP alpha 1 and alpha BGTBP alpha 2 are ligand binding subunits able to bind alpha BGT at sites homologous with nAChR alpha subunits and that these subunits may confer differential ligand binding properties on the two alpha BGTBP subtypes of which they are components.  相似文献   

15.
Monoclonal antibodies (mAbs) to the main immunogenic region (MIR) bind to fusion proteins containing region 37-200 of the alpha chain of Torpedo, mouse, and chicken nicotinic acetylcholine receptor. In the case of the mouse alpha chain, these mAbs react with sequence 61-216 but not with 74-216. A synthetic peptide M1, containing residues 61-76 of the mouse alpha chain, also binds these anti-MIR mAbs, showing that all or part of their binding site is included in this region. The conformational dependence and epitope specificity of the mAbs are discussed.  相似文献   

16.
Recently the purified alpha-subunit from Torpedo marmorata acetylcholine receptor was shown to bind alpha-bungarotoxin with a KD approximately 3 nM in the presence of sodium dodecyl sulfate (Tzartos, S.J., and Changeux, J.P. (1983) EMBO J. 2, 381-387). Here we describe a further significant step toward renaturation of the alpha-subunit as judged by toxin and monoclonal antibody binding. Purified T. marmorata receptor subunits were diluted with 1% lipids (asolectin) plus 0.5% Na+ cholate. An anion-exchange resin eliminated most of the detergents, leaving approximately 0.1% Na+ cholate and the lipids. After this treatment, about 20% of the alpha-subunit recovered (but not the beta-, gamma-, or delta-subunit) exhibited a high affinity for radioiodinated alpha-bungarotoxin with a KD approximately 0.5 nM. The 34,000- and 27,000-dalton proteolytic peptides of the alpha-subunit conserved this lipid-dependent toxin binding. Unlabeled alpha-toxins, hexamethonium, and carbamylcholine competed with alpha-bungarotoxin for the renatured alpha-subunit. Noncompetitive channel blockers doubled the lipid-dependent toxin-binding capacity of the alpha-subunit but had no effect on the 27,000-dalton peptide. The binding of several monoclonal antibodies to the main immunogenic region (which is particularly sensitive to denaturation) significantly increased. In particular, binding of antibody 16 changed from 1% to denatured to 100% to the lipid-renaturated alpha-subunit. The binding of these antibodies was lost with the lipid-renatured 34,000- and 27,000-dalton peptides.  相似文献   

17.
The TE671 human medulloblastoma cell line expresses a variety of characteristics of human neurons. Among these characteristics is the expression of membrane-bound high-affinity binding sites for alpha-bungarotoxin, which is a potent antagonist of functional nicotinic acetylcholine receptors on these cells. These toxin binding sites represent a class of nicotinic receptor isotypes present in mammalian brain. Treatment of TE671 cells during proliferative growth phase with nicotine or carbamylcholine, but not with muscarine or d-tubocurarine, induced up to a five-fold increase in the density of radiolabeled toxin binding sites in crude membrane fractions. This effect was blocked by co-incubation with the nicotinic antagonists d-tubocurarine and decamethonium, but not by mecamylamine or by muscarinic antagonists. Following a 10-13 h lag phase upon removal of agonist, recovery of the up-regulated sites to control values occurred within an additional 10-20 h. These studies indicate that the expression of functional nicotinic acetylcholine receptors on TE671 cells is subject to regulation by nicotinic agonists. Studies of the murine CNS have consistently indicated nicotine-induced up-regulation of nicotinic acetylcholine receptors, thereby supporting the identification of the toxin binding site on these cells as the functional nicotinic receptor. Although a mechanism for this effect is not apparent, nicotine-induced receptor blockade does not appear to be involved.  相似文献   

18.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:5,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

19.
Binding of alpha-bungarotoxin, labeled with 125I, has been studied in detergent extracts and affinity purified acetylcholine receptor from rat cerebral cortex. Binding to detergent extracts is saturable and appears to be due to one class of binding sites present at a level of 0.27 pmol/mg of protein. The association constant is 2 X 10(7) liters mol-1 . Competition with cholinergic ligands indicates that toxin binding to both detergent solubilized and affinity purified receptor retains its nicotinic nature. Values for the ligand concentrations required to produce 50% inhibition of extent and rate of toxin binding are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号