首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned full-length human and mouse cDNAs of ABCB9, which encodes a predicted multiple-spanning transmembrane domain and a nucleotide-binding domain with Walker motifs. It is therefore designated as a "half" ATP binding cassette (ABC) transporter. Northern analysis shows that the ABCB9 mRNA is expressed at a high level in testes and moderate levels in brain and spinal cord. A splice variant mRNA deleted in the last pair of predicted transmembrane segments was shown to be expressed in human tissues. Phylogenetic analysis indicates that ABCB9 is closely related to TAP1 and TAP2, two "half" ABC proteins found in endoplasmic reticulum. ABCB9 protein colocalized with the lysosomal markers, LAMP1 and LAMP2, in transfected cells. ABCB9 protein appears to be most highly expressed in the Sertoli cells of the seminiferous tubules in mouse and rat testes. These cells have high levels of phagocytosis and secretory activities. These findings pave the way for further investigation into the potential novel function of ABCB9 in lysosomes.  相似文献   

2.
To investigate structural requirement of helical apolipoprotein to phosphorylate and stabilize ATP-binding cassette transporter A1 (ABCA1), synthetic peptides (Remaley, A. T., Thomas, F., Stonik, J. A., Demosky, S. J., Bark, S. E., Neufeld, E. B., Bocharov, A. V., Vishnyakova, T. G., Patterson, A. P., Eggerman, T. L., Santamarina-Fojo, S., and Brewer, H. B. (2003) J. Lipid Res. 44, 828-836) were examined for these activities. L37pA, an L amino acid peptide that contains two class-A amphiphilic helices, and D37pA, the same peptide with all D amino acids, both removed cholesterol and phospholipid from differentiated THP-1 cells more than apolipoproteins (apos) A-I, A-II, and E. Both peptides also mediated lipid release from human fibroblasts WI-38 similar to apoA-I. L2D37pA, an L-peptide whose valine and tyrosine were replaced with D amino acids also promoted lipid release from WI-38 but less so with THP-1, whereas L3D37pA, in which alanine, lysine, and asparatic acid were replaced with D amino acids was ineffective in lipid release for both cell lines. ABCA1 protein in THP-1 and WT-38 was stabilized against proteolytic degradation by apoA-I, apoA-II, and apoE and by all the peptides tested except for L3D37pA, and ABCA1 phosphorylation closely correlated with its stabilization. The analysis of the relationship among these parameters indicated that removal of phospholipid triggers signals for phosphorylation and stabilization of ABCA1. We thus concluded that an amphiphilic helical motif is the minimum structural requirement for a protein to stabilize ABCA1 against proteolytic degradation.  相似文献   

3.
ATP binding cassette (ABC) transporters are a diverse superfamily of energy-dependent membrane translocases. Although responsible for the majority of transmembrane transport in bacteria, they are relatively uncommon in eukaryotic mitochondria. Organellar trafficking and import, in addition to quaternary structure assembly, of mitochondrial ABC transporters is poorly understood and may offer explanations for the paucity of their diversity. Here we examine these processes in ABCB10 (ABC-me), a mitochondrial inner membrane erythroid transporter involved in heme biosynthesis. We report that ABCB10 possesses an unusually long 105-amino acid mitochondrial targeting presequence (mTP). The central subdomain of the mTP (amino acids (aa) 36-70) is sufficient for mitochondrial import of enhanced green fluorescent protein. The N-terminal subdomain (aa 1-35) of the mTP, although not necessary for the trafficking of ABCB10 to mitochondria, participates in the proper import of the molecule into the inner membrane. We performed a series of amino acid mutations aimed at changing specific properties of the mTP. The mTP requires neither arginine residues nor predictable alpha-helices for efficient mitochondrial targeting. Disruption of its hydrophobic character by the mutation L46Q/I47Q, however, greatly diminishes its efficacy. This mutation can be rescued by cryptic downstream (aa 106-715) mitochondrial targeting signals, highlighting the redundancy of this protein's targeting qualities. Mass spectrometry analysis of chemically cross-linked, immunoprecipitated ABCB10 indicates that ABCB10 embedded in the mitochondrial inner membrane homodimerizes and homo-oligomerizes. A deletion mutant of ABCB10 that lacks its mTP efficiently targets to the endoplasmic reticulum. Quaternary structure assembly of ABCB10 in the ER appears to be similar to that in the mitochondria.  相似文献   

4.
5.
An ABC transporter, TAP-Like (TAPL), was dissected into its amino-terminal transmembrane domain and the following core domain. When these domains were transiently expressed as tagged proteins with a His6- or Myc-epitope tag, the amino-terminal ones (Met1-Lys182) could not associate with each other, or with the full-length transporter (Met1-Ala766). However, both the core domain (Arg141-Ala766) and full-length protein mutually interacted. The amino-terminal domain (Met1-Arg141) as well as the full-length transporter fused with fluorescent protein GFP was sorted to lysosomal membranes upon their stable expression, as visualized by means of fluorescent microscopy, while the core domain (Arg141-Ala766) was broadly distributed in the intra-cellular membranes. These results suggest that the sorting signal for lysosomes is present within the amino-terminal transmembrane domain (Met1-Arg141) of the TAPL molecule.  相似文献   

6.
ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.  相似文献   

7.
A half-type ABC transporter, human TAP-like (hTAPL) tagged with histidine cluster, was expressed in budding yeast protease-deficient strain BJ5457, and the effect of expression for resistance to peptide compounds including antibiotics and proteinase inhibitor was examined. Among these compounds, the yeast expressing hTAPL exhibits high sensitivity to valinomycin, a monovalent cation ionophore. A mutation in Walker A motif, which lost ATP-binding activity of hTAPL, eliminated the enhanced sensitivity to valinomycin. These findings suggest that the transport activity of hTAPL is important for conferring high valinomycin-sensitive phenotype to yeast.  相似文献   

8.
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.  相似文献   

9.
The maltose transport system of Escherichia coli is a well-characterized member of the ATP binding cassette transporter superfamily. Members of this family share sequence similarity surrounding two short sequences (the Walker A and B sequences) which constitute a nucleotide binding pocket. It is likely that the energy from binding and hydrolysis of ATP is used to accomplish the translocation of substrate from one location to another. Periplasmic binding protein-dependent transport systems, like the maltose transport system of E.coli, possess a water-soluble ligand binding protein that is essential for transport activity. In addition to delivering ligand to the membrane-bound components of the system on the external face of the membrane, the interaction of the binding protein with the membrane complex initiates a signal that is transmitted to the ATP binding subunit on the cytosolic side and stimulates its hydrolytic activity. Mutations that alter the membrane complex so that it transports independently of the periplasmic binding protein also result in constitutive activation of the ATPase. Genetic analysis indicates that, in general, two mutations are required for binding protein-independent transport and constitutive ATPase. The mutations alter residues that cluster to specific regions within the membrane spanning segments of the integral membrane components MalF and MalG. Individually, the mutations perturb the ability of MBP to interact productively with the membrane complex. Genetic alteration of this signalling pathway suggests that other agents might have similar effects. These could be potentially useful for modulating the activities of ABC transporters such as P-glycoprotein or CFTR, that are implicated in disease.  相似文献   

10.
LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis.  相似文献   

11.
The bacterial LmrA protein and the mammalian multidrug resistance P-glycoprotein are closely related ATP-binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated, and by which ATP hydrolysis is coupled to drug transport, are not known. Based on equilibrium binding experiments, photoaffinity labeling and drug transport assays, we conclude that homodimeric LmrA mediates drug transport by an alternating two-site transport (two-cylinder engine) mechanism. The transporter possesses two drug-binding sites: a transport-competent site on the inner membrane surface and a drug-release site on the outer membrane surface. The interconversion of these two sites, driven by the hydrolysis of ATP, occurs via a catalytic transition state intermediate in which the drug transport site is occluded. The mechanism proposed for LmrA may also be relevant for P-glycoprotein and other ABC transporters.  相似文献   

12.
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.  相似文献   

13.
We identified an operon in Listeria monocytogenes EGD with high levels of sequence similarity to the operons encoding the OpuC and OpuB compatible solute transporters from Bacillus subtilis, which are members of the ATP binding cassette (ABC) substrate binding protein-dependent transporter superfamily. The operon, designated opuC, consists of four genes which are predicted to encode an ATP binding protein (OpuCA), an extracellular substrate binding protein (OpuCC), and two membrane-associated proteins presumed to form the permease (OpuCB and OpuCD). The operon is preceded by a potential SigB-dependent promoter. An opuC-defective mutant was generated by the insertional inactivation of the opuCA gene. The mutant was impaired for growth at high osmolarity in brain heart infusion broth and failed to grow in a defined medium. Supplementation of the defined medium with peptone restored the growth of the mutant in this medium. The mutant was found to accumulate the compatible solutes glycine betaine and choline to same extent as the parent strain but was defective in the uptake of L-carnitine. We conclude that the opuC operon in L. monocytogenes encodes an ABC compatible solute transporter which is capable of transporting L-carnitine and which plays an important role in osmoregulation in this pathogen.  相似文献   

14.
In a previous characterization of the ABCA subfamily of the ATP-binding cassette (ABC) transporters, we identified potential protein kinase 2 (CK2) phosphorylation sites, which are conserved in eukaryotic and prokaryotic members of the ABCA transporters. These phosphorylation residues are located in the conserved cytoplamic R1 and R2 domains, downstream of the nucleotide binding domains NBD1 and NBD2. To study the possible regulation of the ABCA1 transporter by CK2, we expressed the recombinant cytoplasmic domains of ABCA1, NBD1+R1 and NBD2+R2. We demonstrated that in vitro ABCA1 NBD1+R1, and not NBD2+R2, is phosphorylated by CK2, and we identified Thr-1242, Thr-1243, and Ser-1255 as the phosphorylated residues in the R1 domain by mass spectrometry. We further investigated the functional significance of the threonine and serine phosphorylation sites in NBD1 by site-directed mutagenesis of the entire ABCA1 followed by transfection into Hek-293 Tet-Off cells. The ABCA1 flippase activity, apolipoprotein AI and AII binding, and cellular phospholipid and cholesterol efflux were enhanced by mutations preventing CK2 phosphorylation of the threonine and serine residues. This was confirmed by the effect of specific protein kinase CK2 inhibitors upon the activity of wild type and mutant ABCA1 in transfected Hek-293 Tet-Off cells. The activities of the mutants mimicking threonine phosphorylation were close to that of wild type ABCA1. Our data, therefore, suggest that besides protein kinase A and C, protein kinase CK2 might play an important role in vivo in regulating the function and transport activity of ABCA1 and possibly of other members of the ABCA subfamily.  相似文献   

15.
ATP-binding cassette (ABC) transport proteins catalyze the translocation of substrates at the expense of hydrolysis of ATP, but the actual ATP/substrate stoichiometry is still controversial. In the osmoregulated ABC transporter (OpuA) from Lactococcus lactis, ATP hydrolysis and substrate translocation are tightly coupled, and the activity of right-side-in and inside-out reconstituted OpuA can be determined accurately. Although the ATP/substrate stoichiometry determined from the uptake of glycine betaine and intravesicular ATP hydrolysis tends to increase with decreasing average size of the liposomes, the data from inside-out reconstituted OpuA indicate that the mechanistic stoichiometry is 2. Moreover, the two orientations of OpuA in proteoliposomes allowed possible contributions from substrate (glycine betaine) inhibition on the trans-side of the membrane and inhibition by ADP to be determined. Here we show that OpuA is not inhibited by up to 400 mm glycine betaine on the trans-side of the membrane. ADP is an inhibitor, but accumulation of ADP was negligible in the assays with inside-out-oriented OpuA, and potential effects of the ATP/ADP ratio on the ATP/substrate stoichiometry determinations could be eliminated.  相似文献   

16.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major components of rat liver peroxisomal membranes and belongs to a superfamily of proteins known as ATP binding cassette transporters. PMP70 is markedly induced by administration of hypolipidemic agents in parallel with peroxisome proliferation and induction of peroxisomal fatty acid beta-oxidation enzymes. To characterize the role of PMP70 in biogenesis and function of peroxisomes, we transfected the cDNA of rat PMP70 into Chinese hamster ovary cells and established cell lines stably expressing PMP70. The content of PMP70 in the transfectants increased about 5-fold when compared with the control cells. A subcellular fractionation study showed that overexpressed PMP70 was enriched in peroxisomes. This peroxisomal localization was confirmed by immunofluorescence and immunoelectron microscopy. The number of immuno-gold particles corresponding to PMP70 on peroxisomes increased markedly in the transfectants, but the size and the number of peroxisomes were essentially the same in both the transfectants and the control cells. beta-Oxidation of palmitic acid increased about 2-3-fold in the transfectants, whereas the oxidation of lignoceric acid decreased about 30-40%. When intact peroxisomes prepared from both the cell lines were incubated with palmitoyl-CoA, oxidation was stimulated with ATP, but the degree of the stimulation was higher in the transfectants than in the control cells. Furthermore, we established three Chinese hamster ovary cell lines stably expressing mutant PMP70. In these cells, beta-oxidation of palmitic acid decreased markedly. These results suggest that PMP70 is involved in metabolic transport of long chain acyl-CoA across peroxisomal membranes and that increase of PMP70 is not associated with proliferation of peroxisomes.  相似文献   

17.
ATP-binding cassette (ABC) transporters play a pivotal role in physiology and pathology. We identified and cloned two novel mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ABC transporter ABCB 5 in human melanoma cells. The deduced ABCB 5alpha protein appears to be an altered splice variant containing only a putative ABC, whereas the ABCB 5beta isoform shares approximately 70% similarity with ABCB1 (MDR1) and has a deduced topological arrangement similar to that of the whole carboxyl terminal half of the ABCB1 gene product, P-glycoprotein, including an intact ABC. Northern blot, real-time PCR, and conventional RT-PCR were used to verify the expression profiles of ABCB 5alpha/beta. We found that the melanomas included among the NCI-60 panel of cell lines preferentially expressed both ABCB 5alpha and ABCB 5beta. However, ABCB 5alpha/beta expression was undetectable in two amelanotic melanomas (M14 and LOX-IMVI). The expression profile of ABCB 5alpha/beta in all of the other melanomas of the panel was confirmed both by RT-PCR and by sequencing. Neither ABCB 5alpha nor ABCB 5beta expression was found in normal tissues such as liver, spleen, thymus, kidney, lung, colon, small intestines or placenta. ABCB 5alpha/beta mRNAs were also expressed in normal melanocytes and in retinal pigment epithelial cells, suggesting that ABCB 5alpha/beta expression is pigment cell-specific and might be involved in melanogenesis. Our findings indicate that expression of ABCB 5alpha/beta might possibly provide two novel molecular markers for differential diagnosis of melanomas and constitute potential molecular targets for therapy of melanomas.  相似文献   

18.
19.
Twelve thiorhodamine derivatives have been examined for their ability to stimulate the ATPase activity of purified human P-glycoprotein (P-gp)-His(10), to promote uptake of calcein AM and vinblastine into multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells. The thiorhodamine derivatives have structural diversity from amide and thioamide functionality (N,N-diethyl and N-piperidyl) at the 5-position of a 2-thienyl substituent on the thiorhodamine core and from diversity at the 3-amino substituent with N,N-dimethylamino, fused azadecalin (julolidyl), and fused N-methylcyclohexylamine (half-julolidyl) substituents. The julolidyl and half-julolidyl derivatives were more effective inhibitors of P-gp than the dimethylamino analogues. Amide-containing derivatives were transported much more rapidly than thioamide-containing derivatives.  相似文献   

20.
Binding and internalization of a protein substrate by E. coli ClpXP was investigated by electron microscopy. In sideviews of ATP gamma S-stabilized ClpXP complexes, a narrow axial channel was visible in ClpX, surrounded by protrusions on its distal surface. When substrate lambda O protein was added, extra density attached to this surface. Upon addition of ATP, this density disappeared as lambda O was degraded. When ATP was added to proteolytically inactive ClpXP-lambda O complexes, the extra density transferred to the center of ClpP and remained inside ClpP after separation from ClpX. We propose that substrates of ATP-dependent proteases bind to specific sites on the distal surface of the ATPase, and are subsequently unfolded and translocated into the internal chamber of the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号