首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some barley yellow-dwarf (BYD) viruses isolated from cereal crops in Great Britain were transmitted by Rhopalosiphum padi , L. and others were not. Sitobion fragariae (Walker), S. avenae (Fabricius), and Metopolophium dirhodum (Walker) all transmitted viruses of both types, but they usually transmitted those of which Rhopalosiphum was a vector less readily than did R. padi. The transmissibility of a virus by a given aphid species was not affected by transmission with another, less efficient, vector species. Neomyzus circumflexus (Buckt.) and Rhopalosiphum maidis (Fitch) transmitted the few viruses with which they were tested.
A few R. padi acquired virus from infected leaves during 30 min. feeding and inoculated healthy seedlings during 15 min. feeding, but the minimum total time taken to acquire and transmit was 10 hr. and 32 hr. were needed for about half the aphids that were able to acquire and transmit virus to do so. This may indicate the existence of a short latent period of the virus in the vector, although the evidence is not conclusive. The times spent on infected plants influenced the results more than those spent on healthy ones; many transmissions occurred with short feeding times on healthy plants so long as the time spent on infected leaves was long, but the reverse was not true. Nymphs of R. padi that moulted after they left infected plants on which they fed long enough to become infective, infected slightly fewer plants than adults fed for the same times.  相似文献   

2.
Pea mosaic virus was transmitted by Myzus persicae Sulz., Macrosiphum pisi Kalt., M. solanifolii Ash. and Aphis fabae Scop., but not by Hyperomyzus staphyleae Koch. It is a 'non-persistent' virus (Watson & Roberts, 1939), and is most readily transmitted when vectors are fasted and then given a short infection feeding. Vector efficiency was not increased by increases in preliminary fasting beyond 15 min. or with increasing infection feeding beyond 1 hr. Most aphids became non-infective within 15 min. when feeding, but fasting aphids remained infective for 3 hr. Species that fed readily on the infected plants were less efficient vectors than those which did not. Seed set by infected plants produced healthy seedlings.
Pea enation mosaic virus persisted in Myzus persicae and Macrosiphum pisi for more than 140 hr.; its transmission was unaffected by preliminary treatments of aphids. No transmission was obtained until at least 4 hr. after aphids had left infected plants; usually the 'latent' period exceeded 1 day and its duration was apparently unaffected by the length of the infection feeding.  相似文献   

3.
Four strains of groundnut rosette virus were transmitted by a race of Aphis craccivora (Koch) from groundnut in Nigeria. Two of these strains, both from East Africa, were transmitted only by A. craccivora from Kenya. A fifth isolate, from Nigeria, was not transmissible by either race. The two races of aphids have been shown elsewhere to be distinct biotypes. Most A. craccivora needed longer than 24 h feeding on infected groundnuts to acquire virus, and many needed 2–3 days of feeding on healthy plants to cause infection, even after several days on infected plants. The delays partly reflect the slow uptake of virus and possibly a period needed for virus multiplication in aphid tissue but some is lost through resistance of the test plants to infection. In consecutive feeding experiments Natal Common variety could be infected soon after aphids had left the source of virus, but a more resistant Nigerian variety sometimes needed several more days. The frequency of inoculation by aphids, or the concentration of virus in the inocula or both, increased with time, but the times at which aphids were able to infect plants was also dependent on variety.  相似文献   

4.
Experiments on the virus-vector relationship of the Trinidad cowpea mosaic virus, transmitted by Ceratoma ruficornis , gave the following results: ability to infect decreased with increasing time after ceasing to feed on infected plants, but vectors remained infective for 14 days (much longer than the longevity in vitro of the virus at glasshouse shade temperatures of 23–31°C.); the beetles transmitted more consistently after longer feeding on infected plants, though feeds of under 5 min. made them efficient vectors; the proportion of plants infected increased with the amount of feeding damage on them; fasting the vectors before feeding on infected plants increased voracity but had no effect on their ability to transmit; beetles became infective immediately after feeding on infected plants. Cowpeas were infected by inoculation with macerated infective vectors or with juice regurgitated by vectors. There is no evidence that aphids or other sucking insects can transmit the virus. It seems similar to squash mosaic and turnip yellow mosaic, for vectors of all three viruses probably transmit by regurgitating infective juice during feeding.  相似文献   

5.
A virus causing a wilt of Datura stramonium was identified as a strain of henbane mosaic virus. It causes necrotic local lesions in Nicotiana rustica , and local lesions are demonstrable in tobacco by staining with iodine. Some of the factors affecting its transmission by Myzus persicae (Sulz.) were studied quantitatively using these lesions.
Infective aphids differed little in their ability to cause infection, and usually produced two or three lesions. The duration of the feeding puncture did not affect the number of infections and had little effect on the percentage of aphids becoming infective. Transmissible virus did not seem to be continually imbibed while aphids fed on infected plants, and there were indications that it was acquired immediately before aphids withdrew their stylets from the leaf. Aphids became infective when allowed to make feeding punctures into epidermis stripped from infected leaves.
M. persicae transmitted during feeding punctures as brief as 5–10 sec; the probability of single feeding punctures resulting in infection reached a maximum with those lasting from 20 to 30 sec, during which the stylets did not penetrate as far as the centre of the epidermal cell and little or no saliva appeared to be ejected. M. persicae did not transmit the virus when its stylets were artificially wetted with infective sap.
Periods of darkness before inoculation with datura wilt virus increased the susceptibility of Nicotiana rustica to infection by rubbing, but not to infection by aphids.  相似文献   

6.
Virus diseases of cacao in West Africa; technique of insect transmission   总被引:2,自引:0,他引:2  
Experiments on the technique of insect transmission of the cacao virus 1A (swollen-shoot) are described. This virus is unique in being transmitted by mealybugs (Coccoidea) and the experiments show that all stages of Pseudococcus njalensis Laing and of Ferrisia virgata Ckll. are vectors. These insects become infective after feeding for less than 4 hr. on the infected plant and transmit after less than 3 hr. on the test plant. The virus is non-persistent in the vector after 3 hr. test-feeding. The vectors can collect virus from either leaf, green shoot, bark or pod; the young symptom-bearing leaf is the best site for infection-feeding and the cotyledon of the bean for test-feeding.  相似文献   

7.
Carrot mottle virus (CMotV) and its helper virus, carrot red leaf (CRLV), were not transmitted by aphids (Cavariella aegopodii) that had fed through membranes on, or had been injected with, sap from mixedly infected chervil plants or partially purified preparations of CMotV. However, the viruses were transmitted by recipient aphids injected with haemolymph from donor aphids that had fed on mixedly infected plants but not by a second series of recipients injected with haemolymph from the first series. Some of the first series of recipients transmitted both viruses for up to 11 days but others transmitted erratically and many lost ability to transmit after a few days. The results confirm that both viruses are circulative but provide no evidence for multiplication in the vector. Non-viruliferous aphids, or aphids that had acquired CRLV by feeding, did not transmit CMotV when they were injected with haemolymph from aphids that had fed on a source of CMotV alone, confirming that they can only transmit CMotV when they acquire it from a mixedly infected plant. When extracts from donor aphids were treated with ether before injection, recipient aphids transmitted both CRLV and CMotV, although the infectivity of CMotV grown in Nicotiana clevelandii in the absence of CRLV is destroyed by ether treatment. CMotV particles acquired by aphids from mixedly infected plants therefore differed in some way from those in singly infected plants. A plausible explanation of these results, and of the dependence of CMotV on CRLV for aphid transmission, is that doubly infected plants contain some particles that consist of CMotV nucleic acid coated with CRLV protein.  相似文献   

8.
Datura tatula is a more suitable host than potato for studying the factors influencing the transmission of potato leaf-roll virus by Myzus persicae ; it is more easily infected, provides a better source of virus for feeding aphids, produces symptoms more quickly and over a longer period of the year.
Loughnane's (1943) claim that leaf-roll virus is transmitted by starved aphids that feed for only 5 min. on infected potato plants was not confirmed. The shortest infection-feeding time in which M. persicae aphids became infective was 2 hr.; such aphids did not infect healthy plants in the first 2 days and, when transferred to a series of healthy plants at intervals, infected only few. The ability to cause infections was increased by increasing the length of infection feeding. Aphids fed for many days on infected plants could infect healthy plants in the first 15 min. of test feeding, and they continued to cause infections for long periods.
Aphids became infective more readily when feeding on recently infected Datura tatula , showing only slight symptoms, than on older plants with pronounced chlorosis; similarly, young potato sprouts showing no symptoms were better sources of virus for aphids than older plants showing severe leaf roll.
The differences in severity of symptoms shown by potato plants with leaf roll in the field mainly occur because of differences in virulence of accompanying strains of potato virus X , but isolates of leaf-roll virus were found that also varied in virulence.  相似文献   

9.
Tobacco yellow vein, a disease found in Malawi, is caused by a combination of two viruses transmitted in the persistent manner by aphids. One component, tobacco yellow vein virus (TYVV) is manually transmissible, but aphids transmit it only from plants also containing the other (assistor) component, which is not manually transmissible. Aphids also transmit TYVV from plants containing either of two other assistor viruses - tobacco vein-distorting and groundnut rosette assistor. A virulent isolate of TYVV infected Soja max, Arachis hypogaea and several solanaceous species. It infected plants already containing tobacco mottle or groundnut rosette viruses but not those containing a mild isolate of TYVV.  相似文献   

10.
Sitona lineatus and Apion vorax were the two most common species of weevil on field beans (Vicia faba minor) at Rothamsted between 1970 and 1974. In glasshouse tests, A. vorax was a much more efficient vector than 5. lineatus of broad bean stain virus (BBSV) and Echtes Ackerbohnenmosaik-Virus (EAMV), and both species transmitted EAMV more often than BBSV. Five other species of Apion transmitted the viruses infrequently or not at all. S. lineatus adults transmitted no more often after 8–16 days on infected plants than after 1–2 days. Some A. vorax adults transmitted EAMV, but not BBSV, after feeding on infected leaves for a few minutes. After 4 days on infected plants, A. vorax sometimes remained infective for the following 8 days. No A. vorax collected from woodland plants in spring was infective with BBSV or EAMV, but 4% from bean crops containing seed-borne infection carried BBSV and 17% carried EAMV. BBSV and EAMV were recovered from triturated weevils, but not from weevil haemolymph. Possibly the viruses are transmitted as contaminants of the mouthparts or by regurgitation during feeding, but A. vorax was observed to regurgitate only when anaesthetized. BBSV and EAMV were not transmitted by aphids (Aphis fabae and Acyrthosiphon pisum), nor by pollen beetles {Meligethes spp.). Field observations suggest that infected seed is the main source of BBSV and EAMV in spring-sown crops, and that crops grown from virus-free seed, and isolated from infected crops by 250–500 m, remain free of infection for most of the season.  相似文献   

11.
Exposing both surfaces of leaves systemically infected with cabbage black ring spot virus (CBRSV) or henbane mosaic virus to ultra-violet radiation decreases the infectivity of expressed sap to about one-fifth. As irradiation probably inactivates virus mainly in the epidermis, which occupies about one-quarter the volume of the leaves, these viruses seem to occur at much higher concentrations in sap from the epidermis than in sap from other cells. By contrast, tobacco mosaic virus seems not to occur predominantly in the epidermis.
CBRSV and henbane mosaic virus are normally transmitted most frequently by previously fasted aphids that feed for only short periods on infected leaves, but aphids treated like this transmit rarely from leaves that have been exposed to ultraviolet radiation. Irradiation has relatively little effect on the proportion of aphids that transmit after long infection feedings. Fasting seems to increase transmission by increasing the probability that aphids will imbibe sap from the epidermis of leaves they newly colonize. With longer periods on infected leaves, the ability of fasted aphids to transmit probably decreases because they then feed from deeper cells and their stylets contain sap with less virus. Only virus contained in the stylets seems to be transmitted, not virus taken into the stomach. About half the transmissions of henbane mosaic virus by aphids that have colonized tobacco leaves for hours may be caused by insects that temporarily cease feeding on the phloem and newly penetrate the epidermis.
Irradiating infected leaves affected the transmission of sugar-beet mosaic virus in the same way as that of henbane mosaic virus, but had little effect on the transmission of beet yellows virus, whose vectors become more likely to transmit the longer they feed on infected plants.  相似文献   

12.
Potato virus Y (PVY, genus Potyvirus, family Potyviridae) is transmitted non‐persistently by aphids. It causes major losses in potato production (Solanum tuberosum), especially following seed tuber‐borne infection of plants. To limit the risk of PVY infection, seed potato production is located preferably in regions where vector pressure is low. The northern‐most high‐grade seed potato production area (HG zone) of Europe is in Finland. The aim of this study was to determine the incidence of aphid species with documented ability to transmit PVY and to use a modelling approach to determine their relative importance as vectors of PVY in the HG zone of Finland. Winged aphids were caught from six to seven potato fields in each of three growing seasons (2007–09) using yellow pan traps that were examined twice a week. Identification of more than 30 000 individuals indicated that 37% of the aphids belonged to nine species reported to transmit PVY. Incidence of PVY in seed lots was low (0–5.6%) and the seasonal increase of PVY incidence was also low in the potato crops. No potato‐colonising aphids were found on the plants in any of the years. The seasonal increase in PVY incidence was modelled using aphid counts in traps, the relative vector efficiencies of the aphids, virus resistance of cultivars, and the initial infection rate of the seed tubers as explanatory variables in generalised linear mixed modelling. Akaike's information criterion was employed to find the best set of explanatory variables for PVY in harvested tubers. Results of this modelling approach showed that the incidence of seed‐borne PVY infection and the early‐season vector flights are the most important factors contributing to the incidence of PVY in the yield. Compared to models with data from all potential vector species, models containing data from Aphis fabae only showed a better model fit with regard to the incidence of PVY in the harvested tubers. The explanatory power of the models was lost when A. fabae was omitted from the vector data, suggesting that other species play a negligible role as vectors of PVY in the HG zone of Finland. Results can be used to devise appropriate strategies for enhanced control of PVY.  相似文献   

13.
Two isolates of groundnut rosette virus from East Africa (GRVE1 and GRVE2) and from West Africa (GRVW1 and GRVW2) were transmitted by Aphis craccivora obtained from West Africa. A third isolate from West Africa (GRVW3) was not transmitted by A. craccivora from three widely separated sources. GRVW1, GRVW2 and GRVW3 caused leaf-symptoms in groundnut of a mosaic pattern in light and dark green. GRVE1 and GRVE2 caused chlorosis or chlorosis and leaf distortion as well as mosaic symptoms. Groundnut plants with GRVW1 could not be infected by means of aphids with GRVE1, and GRVE1 gave similar protection against GRVW1, which suggests that they are strains of the same virus. All isolates were transmissible manually from groundnut to groundnut (Arachis hypogea), Trifolium incarnatum and T. repens, and caused systemic infection. Inoculated Nicotiana clevelandii and N. rustica developed symptoms but virus could not be recovered from them. Chenopodium amaranticolor, C. hybridum and C. quinoa showed local lesions on inoculated leaves. Virus could be acquired by aphids from groundnut or Trifolium repens infected by means of aphids, but not from those infected by manual inoculation. Virus could not be recovered from T. incarnatum manually or by aphids, but was transmitted by cleft-grafting from clover to groundnut. Saps extracted in borax buffer plus zinc sulphate at pH 9 from plants infected with GRVW1 and GRVE1 remained infective at 18° C. for 1 week, and at — 20° C. for up to 4 weeks. Virus could be recovered from frozen leaves. Buffered saps lost infectivity when heated above 50° C. for 10 min.; most were still infective when diluted 1/10 and some at 1/100. Electron micrographs of partially purified preparations contained spherical particles 25–28 mμ in diameter. There were usually only about five per microscope field and they resembled those of some other viruses.  相似文献   

14.
Caged cauliflower plants infected with either cabbage black ring spot virus (CBRSV) or cauliflower mosaic virus (CIMV) were colonized with Myzus persicae or Brevicoryne brassicae. Winged and wingless aphids that voluntarily flew or walked from these plants were transferred singly to healthy cauliflower or other brassica seedlings to compare their feeding behaviour and ability to transmit the viruses. Wingless aphids settled to probe more readily than winged, and B. brassicae was initially more restless than M. persicae. CIMV was more readily transmitted than CBRSV by both species, and B. brassicae rarely transmitted CBRSV. Wingless aphids transmitted less often than winged ones, and no wingless B. brassicae transmitted CBRSV, although they did CIMV. Fewer aphids transmitted CBRSV from old plants than from young ones, but plant age had little effect on CIMV transmission.  相似文献   

15.
Bean yellow vein-banding virus (BYVBV) has been found occasionally in mixed infection with pea enation mosaic virus (PEMV) in spring-sown field beans (Vicia faba minor) in southern England. Glasshouse tests confirmed that, like PEMV, BYVBV is transmissible by manual inoculation and by aphids in the persistent manner. However, BYVBV can be transmitted by aphids only from plants that are also infected with a helper virus, usually PEMV. Thus after separation from PEMV by passage through Phaseolus vulgaris it was no longer aphid-transmissible. It became aphid-transmissible again only after re-mixing in plants with PEMV or with a substitute helper, bean leaf roll virus (BLRV). It was not transmitted by aphids that fed sequentially on plants singly infected with PEMV and BYVBV. Thus the interaction between BYVBV and PEMV (or BLRV) that enables BYVBV to be transmitted by aphids seems to occur only in doubly infected plants. However, it was not transmitted by aphids from plants doubly infected with BYVBV and broad bean wilt virus (BBWV). BYVBV and PEMV were transmitted more readily by Acyrthosiphon pisum than by Myzus persicae; neither virus was transmitted by Aphis fabae. Phenol extracts of BYVBV-infected leaves were more infective than phosphate buffer or bentonite-clarified extracts and were sometimes infective when diluted to 1/1000. The infectivity of BYVBV in phosphate buffer extracts of leaves singly infected with BYVBV, unlike that in extracts of leaves doubly infected with BYVBV and PEMV (or BLRV), was destroyed by treatment with organic solvents. BYVBV infected 11 of 28 plant species that were inoculated with phenol extracts; seven of the infected species were legumes. No transmission of BYVBV was detected through seed harvested from infected field bean plants. Isometric particles c. 30 nm in diameter were seen in extracts of plants doubly infected with BYVBV and PEMV but not in extracts of plants infected with BYVBV alone. Leaves of plants infected with BYVBV, alone or with PEMV, contained membrane-bound structures c. 50–90 nm in diameter associated with the tonoplast in cell vacuoles. These structures were not found in healthy leaves. BYVBV has several properties in common with other known aphid-borne viruses that are helper-dependent and transmitted in a persistent manner. Possibly, as suggested for some of them, aphid transmission of BYVBV depends on the coating of its nucleic acid with helper virus coat protein.  相似文献   

16.
A virus that causes chlorotic streaks on ryegrass leaves was transmitted by the eriophyid mite Abacarus hystrix (Nalepa). Virus-free mites acquired the virus in 2 hr. feeding on infected ryegrass and the proportion that became infective increased with increased feeding time up to 12 hr.; vectors lost infectivity within 24 hr. of leaving the infected leaves. All instars of A. hystrix transmitted the virus.
The virus was transmitted by manual inoculation of sap to other species of Gramineae, including oats, rice, cocksfoot and meadow fescue, but none of these hosts seemed to contain as much virus as ryegrass; their saps did not precipitate specifically with antiserum prepared against the virus in ryegrass, whereas sap from infected ryegrass precipitated up to a dilution of 1/32. Infective sap of S22 Italian ryegrass contained flexuous rod-shaped particles; the dilution end-point of the virus was about 1 in 1000; the virus was inactivated when held for 10 min. at 60°C. and most of its infectivity was lost after 24 hr. at room temperature.  相似文献   

17.
STUDIES ON DANDELION YELLOW MOSAIC AND OTHER VIRUS DISEASES OF LETTUCE   总被引:1,自引:0,他引:1  
The symptoms caused by dandelion yellow mosaic virus on cultivated lettuce, Lactuca serriola and L. virosa , are described and compared with those caused by lettuce mosaic virus. Lettuce is much more susceptible than dandelion to the yellow mosaic virus; no infections of dandelion were obtained by mechanical inoculation and only three by aphides, whereas infection of lettuce is regularly obtained by aphides and by inoculation provided an abrasive is used. Myzus ornatus, M. ascalonicus and Aulacorthum solani transmitted dandelion yellow mosaic virus but not lettuce mosaic virus, whereas Myzus persicae transmitted the latter but not the former. Nasonovia ribicola , the common lettuce aphis, transmitted neither. Aphides became infective only after feeding periods of some hours on the diseased plants and ceased to be infective within an hour of the infective feeding. Their efficiency as vectors was not increased by a preliminary starving period, as happens with Myzus persicae and lettuce mosaic virus. Lettuce mosaic virus was found in most samples of commercial seed, which explains its prevalence; no evidence was found for the seed-transmission of dandelion mosaic virus and it is doubtful if it occurs, for infected lettuce are so severely affected that they rarely set seed.
Cucumber mosaic virus was isolated from naturally infected lettuce.  相似文献   

18.
Aphids ( Capitophorus fragariae Theob.) allowed to feed for several days on a strawberry plant infected with yellow-edge transmitted two virus fractions. The isolation and properties of one (virus 1) have been described previously. The other (virus 2) was separated by transferring the aphids to fresh indicators after 24 hr.
Virus 2 was retransmitted after infection feeding periods of 24 hr. or more and persisted in the vector for several days. There is some evidence that it is itself a complex of viruses which can be separated further. On Fragaria vesca virus 2 produced chlorotic spotting, slight marginal chlorosis of the leaves and slight cupping of the leaflets. On Royal Sovereign strawberry it produced slight chlorosis of the young leaves.
On Royal Sovereign viruses 1 and 2 together produced symptoms of yellow-edge which is thus shown to be caused by a virus complex which can be resolved by means of the aphis vector.  相似文献   

19.
Groundnut plants with chlorotic rosette disease contain a manually transmissible virus, groundnut rosette (GRV), which is also transmitted in the persistent (circulative) manner by aphids (Aphis craccivora), but only from plants that are co-infected with a manually non-transmissible luteovirus, groundnut rosette assistor virus (GRAV). Strains of GRV from plants with chlorotic or green forms of rosette are called GRV(C) and GRV(G) respectively. An isolate of GRV(C) from Nigeria remained infective in Nicotiana clevelandii leaf extracts for 1 day at room temperature and for 15 days at 4d?C, but lost infectivity after 1 day at -20d?C or after dilution to 10--4. Its infectivity and longevity in vitro were not altered by addition of 1 mg/litre bentonite to the extraction buffer. Infectivity in leaf extracts was abolished by treatment with 50% (v/v) ether, 10% (v/v) chloroform or 8% (v/v) n-butanol, but not by treatment for 30 min with RNase A at up to 100 ng/ml. In attempts to purify GRV(C), nearly all the infectivity from N. clevelandii extracts was found in the pellets from centrifugation at 65 000 g for 1. 5 h; infectivity also occurred in a cell membrane fraction that collected at the top of a 30% sucrose ‘cushion’ containing 4% polyethylene glycol and 0.2 M NaCI. However, no virus-like particles were found in either type of preparation by electron microscopy. Nucleic acid preparations made directly from GRV(C)-infected N. clevelandii leaves were very infective; this infectivity was totally inactivated by treatment for 30 min with RNase A at 10 ng/ml in buffers of both low and high ionic strength and was therefore attributed to ssRNA. When nucleic acid preparations were electrophoresed in gels no virus-specific bands were visible but the position of the infectivity indicated that the infective ssRNA has an apparent mol. wt of c. 1.55 × 106. A similar mol. wt was indicated by the rate of sedimentation of the infective ssRNA in sucrose gradients. Preparations of dsRNA made from GRV(C)-infected N. clevelandii leaves contained a species of mol. wt c. 3.0 × 106; in addition some dsRNA preparations contained an abundant component of mol. wt c. 0.6 × 106 together with several other components of intermediate mol. wt. Similar patterns of bands were observed in dsRNA preparations made from Nigerian-grown groundnut material infected with GRV(C) alone, or with GRV(C) + GRAV, or with GRV(G) + GRAV. The properties of GRV closely resemble those of two other viruses that depend on luteoviruses for transmission by aphids, carrot mottle virus and lettuce speckles mottle virus.  相似文献   

20.
Rosette disease of groundnuts in Tanganyika is brought into the crop by infective alatae of Aphis craccivora : spread within the crop is by apterae and alatae. During the dry season the aphids maintain themselves on self-set groundnuts and on two genera of Leguminosae: Vigna and Millettia or Lonchocarpus. No native source of the virus causing rosette disease has been discovered, but self-set groundnuts carry over the virus from one cropping season to the next. Syrphid larvae and other predators are important in controlling the vector. Preliminary spraying trials with 0.5% schradan gave promising results in controlling the aphids on groundnut crops and consequently checking the spread of rosette disease. Selections of the variety Mwitunde showed the lowest incidence of rosette infection and gave the highest yields in trials in 1952.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号