首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mild and rapid method is described for isolating various milk proteins from bovine rennet whey. β-Lactoglobulin from bovine rennet whey was easily adsorbed on and desorbed from a weak anion exchanger, diethylaminoethyl-Toyopearl. However, α-lactalbumin could not be adsorbed onto the resin. α-Lactalbumin and β-lactoglobulin from rennet whey could also be adsorbed and separated using a strong anion exchanger, quaternary aminoethyl-Toyopearl. The rennet whey was passed through a strong cation exchanger, sulphopropyl-Toyopearl, to separate lactoperoxidase and lactoferrin. α-Lactalbumin and β-lactoglobulin were adsorbed onto quaternary aminoethyl-Toyopearl. α-Lactalbumin was eluted using a linear (0–0.15 M) concentration gradient of NaCl in 0.05 M Tris–HCl buffer (pH 8.5). Subsequently, β-lactoglobulin B and β-lactoglobulin A were eluted from the column with 0.05 M Tris–HCl (pH 6.8), using a linear (0.1–0.25 M) concentration gradient of NaCl. The yields were 1260 mg α-lactalbumin, 1290 mg β-lactoglobulin B and 2280 mg β-lactoglobulin A from 1 l rennet whey.  相似文献   

2.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

3.
4.
5.
Significant advances have been achieved in the fields of peptide/protein synthesis, permitting the preparation of large, complex molecules. Shortcomings, however, continue to exist in the area of peptide purification. This paper details some studies we undertook to develop a new strategy for peptide purification based on a reactivity of α‐ketoacyl groups in peptides. The α‐ketoacyl peptide was generated from Nε‐acyl‐lysyl‐peptide in the solid phase via a transamination reaction using glyoxylic acid and nickel(II) ion. Cleavage of the α‐ketoacyl group with o‐phenylenediamine gave the target peptide in an acceptable yield and purity. We first carried out a careful step‐by‐step optimization of the purification conditions using a model peptide. The strategy was then used in the purification of a transmembrane peptide that could not be effectively purified using a conventional RP‐HPLC system due to the strong hydrophobicity of the peptide and its high tendency to aggregate. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Mixed matrix membranes (MMMs), which incorporate adsorptive particles during membrane casting, can be prepared simply and have performances that are competitive with other membrane chromatography materials. The application of MMM chromatography for fractionation of β‐Lactoglobulin from bovine whey is described in this article. MMM chromatography was prepared using ethylene vinyl alcohol polymer and lewatit anion exchange resin to form a flat sheet membrane. The membrane was characterized in terms of structure and its static and dynamic binding capacities were measured. The optimum binding for β‐Lactoglobulin was found to be at pH 6.0 using 20 mM sodium phosphate buffer. The MMM had a static binding capacity of 120 mg/g membrane (36 mg/mL membrane) and 90 mg/g membrane (27 mg/mL membrane) for β‐Lactoglobulin and α‐Lactalbumin, respectively. In batch fractionation of whey, the MMM showed selective binding towards β‐Lactoglobulin compared to other proteins. The dynamic binding capacity of β‐Lactoglobulin in whey solution was about 80 mg/g membrane (24 mg β‐Lac/mL of MMM), which is promising for whey fractionation using this technology. This is the first reported application of MMM chromatography to a dairy feed stream. Biotechnol. Bioeng. 2009;103: 138–147. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

8.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

9.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

11.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Ashbya gossypii has been recently considered as a host for the expression of recombinant proteins. The production levels achieved thus far were similar to those obtained with Saccharomyces cerevisiae for the same proteins. Here, the β‐galactosidase from Aspergillus niger was successfully expressed and secreted by A. gossypii from 2‐µm plasmids carrying the native signal sequence at higher levels than those secreted by S. cerevisiae laboratorial strains. Four different constitutive promoters were used to regulate the expression of β‐galactosidase: A. gossypii AgTEF and AgGPD promoters, and S. cerevisiae ScADH1 and ScPGK1 promoters. The native AgTEF promoter drove the highest expression levels of recombinant β‐galactosidase in A. gossypii, leading to 2‐ and 8‐fold higher extracellular activity than the AgGPD promoter and the heterologous promoters, respectively. In similar production conditions, the levels of active β‐galactosidase secreted by A. gossypii were up to 37 times higher than those secreted by recombinant S. cerevisiae and ~2.5 times higher than those previously reported for the β‐galactosidase‐high producing S. cerevisiae NCYC869‐A3/pVK1.1. The substitution of glucose by glycerol in the production medium led to a 1.5‐fold increase in the secretion of active β‐galactosidase by A. gossypii. Recombinant β‐galactosidase secreted by A. gossypii was extensively glycosylated, as are the native A. niger β‐galactosidase and recombinant β‐galactosidase produced by yeast. These results highlight the potential of A. gossypii as a recombinant protein producer and open new perspectives to further optimize recombinant protein secretion in this fungus. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:261–268, 2014  相似文献   

13.
14.
The adaptation of nine species of mites that infest stored products for starch utilization was tested by (1) enzymatic analysis using feces and whole mite extracts, (2) biotests, and (3) inhibition experiments. Acarus siro, Aleuroglyphus ovatus, and Tyroborus lini were associated with the starch‐type substrates and maltose, with higher enzymatic activities observed in whole mite extracts. Lepidoglyphus destructor was associated with the same substrates but had higher activities in feces. Dermatophagoides farinae, Chortoglyphus arcuatus, and Caloglyphus redickorzevi were associated with sucrose. Tyrophagus putrescentiae and Carpoglyphus lactis had low or intermediate enzymatic activity on the tested substrates. Biotests on starch additive diets showed accelerated growth of species associated with the starch‐type substrates. The inhibitor acarbose suppressed starch hydrolysis and growth of the mites. We suggest that the species with higher starch hydrolytic activity in feces were more tolerant to acarbose, and α‐amylase and α‐glucosidase of synanthropic mites are suitable targets for inhibitor‐based strategies of mite control. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
A novel strain of influenza A H1N1 emerged in the spring of 2009 and has spread rapidly throughout the world. Although vaccines have recently been developed that are expected to be protective, their availability was delayed until well into the influenza season. Although anti‐influenza drugs such as neuraminidase inhibitors can be effective, resistance to these drugs has already been reported. Although human saliva was known to inhibit viral infection and may thus prevent viral transmission, the components responsible for this activity on influenza virus, in particular, influenza A swine origin influenza A virus (S‐OIV), have not yet been defined. By using a proteomic approach in conjunction with beads that bind α‐2,6‐sialylated glycoprotein, we determined that an α‐2‐macroglobulin (A2M) and an A2M‐like protein are essential components in salivary innate immunity against hemagglutination mediated by a clinical isolate of S‐OIV (San Diego/01/09 S‐OIV). A model of an A2M‐based “double‐edged sword” on competition of α‐2,6‐sialylated glycoprotein receptors and inactivation of host proteases is proposed. We emphasize that endogenous A2M in human innate immunity functions as a natural inhibitor against S‐OIV.  相似文献   

16.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

17.
The leaffooted bug, Leptoglossus zonatus (Hemiptera: Coreidae) is an emerging pest of several crops around the World and up to now very little is known of its digestive system. In this article, glycoside hydrolase (carbohydrase) activities in the adult midgut cells and in the luminal contents of L. zonatus adult females were studied. The results showed the distribution of digestive carbohydrases in adults of this heteropteran species in the different intestinal compartments. Determination of the spatial distribution of α‐glucosidase activity in L. zonatus midgut showed only one major molecular form, which was not equally distributed between soluble and membrane‐bound isoforms, being more abundant as a membrane‐bound enzyme. The majority of digestive carbohydrases were found in the soluble fractions. Activities against starch, maltose and the synthetic substrate NPαGlu were found to show the highest levels of activity, followed by enzymes active against galactosyl oligosaccharides. Based on ion‐exchange chromatography elution profiles and banding patterns in mildly denaturing electrophoresis, both midgut α‐amylases and α‐galactosidases showed at least two isoforms. The data suggested that the majority of carbohydrases involved in initial digestion were present in the midgut lumen, whereas final digestion of starch and of galactosyl oligosaccharides takes place partially within the lumen and partially at the cell surface. The complex of carbohydrases here described was qualitatively appropriate for the digestion of free oligosaccharides and oligomaltodextrins released by α‐amylases acting on maize seed starch granules.  相似文献   

18.
α‐Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α‐glycosidase and α‐amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α‐amylase and α‐glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC50 values in the range of 137.36–737.23 nM against α‐amylase and 29.01–157.96 nM against α‐glycosidase.  相似文献   

19.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号