首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nocardia tartaricans converted sodium cis-epoxysuccinate to L-tartrate. The highest cis-epoxysuccinate hydrolase activity (37.7 U mg–1) was obtained with 0.02% (w/v) sodium deoxycholate, but this inactivated the cells. Immobilized N. tartaricans in pectate gel showed higher enzyme activity (51 U mg –1) compare to the free cells (8.9 U mg –1). After 450 days, the immobilized cells still possessed 0.65 U mg –1, i.e. 30% of the initial enzyme activity.  相似文献   

2.
《Process Biochemistry》2014,49(4):655-659
An efficient biocatalytic process for the production of nicotinic acid (niacin) from 3-cyanopyridine was developed using cells of recombinant Escherichia coli JM109 harboring the nitrilase gene from Alcaligenes faecalis MTCC 126. The freely suspended cells of the biocatalyst were found to withstand higher concentrations of the substrate and the product without any signs of substrate inhibition. Immobilization of the cells further enhanced their substrate tolerance, stability and reusability in repetitive cycles of nicotinic acid production. Under optimized conditions (37 °C, 100 mM Tris buffer, pH 7.5) for the immobilized cells, the recombinant biocatalyst achieved a 100% conversion of 1 M 3-cyanopyridine to nicotinic acid within 5 h at a cell mass concentration (fresh weight) of 500 mg/mL. The high substrate/product tolerance and stability of the immobilized whole cell biocatalyst confers its potential industrial use.  相似文献   

3.
Nocardia corallina B-276 cells are capable of catalysing the direct epoxidation of propylene to propylene oxide, through a monooxygenase enzyme system. The present work was undertaken to see how immobilization of the whole cells by adsorption or entrapment on solid supports would influence the rate and duration of the epoxidation activity. With immobilization by adsorption, the propylene oxide forming activity was highest on hydrophobic supports, such as polypropylene or polyethylene. Under certain conditions the activity was three times that of the free control cells. However, the duration of epoxidation activity was considerably less for the adsorbed cells. The cell loading by adsorption, determined with14C-labelled cells was 1.0–2.8 mg dry cell weight g?1of support. The cells, whether immobilized or not (controls), were tested using a continuous gas flow packed-bed or bubble-type reactor. Immobilization of the cells by entrapment in calcium alginate beads gave about the same propylene oxide forming activity and stability as with control cells, provided the reactor was operated at low temperature (30°C) and low oxygen content (20%) of the feed stream. The results suggest that entrapment in a hydrophobic matrix might be a more favourable system; although additional investigation of the rate limiting steps as well as the cause of the activity loss with time is needed.  相似文献   

4.
Production of β-cyclodextrin (β-CD) by Bacillus firmus strain 37 cells, immobilized by adsorption on silica–titania (SiO2/TiO2) and silica–manganese dioxide (SiO2/MnO2) matrices, was optimized for temperature, substrate concentration and initial biomass. The immobilization process was most efficient at 60 °C with 10% maltodextrin and 1.0 g of cells, resulting, after a 5-day assay, in a β-CD production of 11.7 ± 0.1 mM for cells immobilized on SiO2/TiO2 and 11.2 ± 0.1 mM in SiO2/MnO2. Entrapment in alginate gel resulted in a maximum β-CD production of 4.1 ± 0.1 mM, which was maintained constantly until the end of a 10-day assay. During this same period, free cells produced 8.3 ± 0.2 mM, and cells immobilized on SiO2/TiO2 and SiO2/MnO2, 16.7 ± 0.4 and 17.3 ± 0.5 mM, respectively. β-CD production by cells immobilized in calcium alginate in four repetitive cycles of 5 days each, showed an increase up to the third cycle, reaching 4.8 ± 0.2 mM, while production by free cells started falling from the second cycle. In this same assay, cells immobilized on SiO2/TiO2 and SiO2/MnO2, showed the best β-CD production results at the end of the first cycle, with a gradual fall occurring due to the desorption of cells thereafter.  相似文献   

5.
Altering the cell permeability by treating Cryptococcus neoformans with 1% (v/v) hexane stimulated the yield of transformation of n-pentadecane to the corresponding dioic acid, tridecane 1,13-dicarboxylic acid (DC-15); however, the biotransformation process was inhibited by the elevated levels of DC-15. To avoid product inhibition, a continuous process with immobilized cells was performed, and the result showed that the yield of DC-15 production was increased up to fivefold as compared with the batch type of DC-15 production. To integrate the product recovery process with the biotransformation, Amberlite XAD-2 resin was used for adsorbing DC-15 and configured as an external in situ product recovery system. The continuous process described in this study is adaptable for large-scale production of DC-15.  相似文献   

6.
Surfactants were used to permeabilize cells of Pseudomonas putida KT2440 so as to maximize retention of the arginine deiminase (ADI) activity within the treated cells. The surfactants cetyltrimethylammoniumbromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X100 were tested separately. Statistical models were developed for the effects on the ADI activity of the following factors: the concentration of the surfactant, the length of the treatment period and the concentration of the cells. For all surfactants, the concentration of cells was the most significant factor in influencing permeabilization. All permeabilization treatments used mild conditions (pH 7, 37 °C). The permeabilized cells were immobilized in alginate beads for the biotransformation of arginine to citrulline. The optimal conditions for immobilization and biotransformation were as follows: 2% (w/v, g/100 mL) sodium alginate, 100 g/L of treated cells, 40 mM arginine, pH 6.0, a temperature of 35 °C and an agitation speed of 150 rpm. The immobilized biocatalyst retained nearly 90% of its initial activity after nine cycles of repeated use in batch operations. In contrast, the freely suspended cells were barely active after the second use cycle.  相似文献   

7.
Whole cells of the yeast Rhodotorula minuta were used in the biotransformation of dialkyl esters of 2-oxoglutaric acid. Almost 100% of conversion with 97–98% of enantiomeric excess of the (S) form of 2-hydroxydiesters was obtained through an enantioselective reduction of dimethyl and diethyl 2-oxoglutarate. When longer alkoxy chain 2-oxoglutarates were used as substrates, the corresponding 4-hydroxybutyric esters were obtained, suggesting a combination process including hydrolysis, decarboxylation and reduction. The cells showed a remarkable high productivity: high conversion and enantiomeric excess were obtained at 2 g wet weight mmol?1 substrate.  相似文献   

8.
Whole cells of the yeast Rhodotorula minuta were used in the biotransformation of dialkyl esters of 2-oxoglutaric acid. Almost 100% of conversion with 97-98% of enantiomeric excess of the (S) form of 2-hydroxydiesters was obtained through an enantioselective reduction of dimethyl and diethyl 2-oxoglutarate. When longer alkoxy chain 2-oxoglutarates were used as substrates, the corresponding 4-hydroxybutyric esters were obtained, suggesting a combination process including hydrolysis, decarboxylation and reduction. The cells showed a remarkable high productivity: high conversion and enantiomeric excess were obtained at 2 g wet weight mmol-1 substrate.  相似文献   

9.
A gene encoding β-glucosidase was cloned and over-expressed in Escherichia coli. Validamycin A was then biotransformed into validoxylamine A by using the resting recombinant cells. The biotransformation yield reached 92% when the reaction was performed at 37°C for 1 h in the presence of 100 ml sodium phosphate buffer (0.1 M, pH 7.0), 32 mM validamycin A and 0.71 mg dry cell w/ml.  相似文献   

10.
A new method of enhanced extraction genistein from pigeon pea [Cajanus cajan (L.) Millsp.] roots with the biotransformation of immobilized edible Aspergillus oryzae and Monacus anka, was investigated. It showed that immobilized Aspergillus oryzae and Monacus anka on sodium alginate effectively supported the highest genistein extraction yield by screening microorganism tests. After biotransformation process with immobilized Aspergillus oryzae and Monacus anka under 30 °C, pH 6.0, 2 days, liquid-solid ratio 12: 1 (mL/g), the extraction yield of genistein reached 1.877 mg/g, which was 2.65-fold to that of normal extraction yield. Moreover, IC50 values of the extracts measured by DPPH-radical scavenging test and β-Carotene-linoleic acid bleaching test were 0.737 mg/mL and 0.173 mg/mL (control sample 1.117 mg/mL and 0.216 mg/mL), respectively. SOD (Super Oxygen Dehydrogenises) activity of the extracts treated with immobilized microorganism which was stronger than that of the untreated pigon pea roots (1.44 U/mg) at the concentration of protein (0.9375 μg/mL) was 1.83 U/mg. The developed method could be an alternative method for the enhanced extraction of genistein from plants and could be potentially applied in the food industry  相似文献   

11.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

12.
A simple method for the preparation of the biocatalyst with whole cells is presented, and the applicability of the technique for biodegradation of phenol in wastewater from the chemical industries using the basidomycetes yeast Trichosporon cutaneum is explored. Kinetic studies of the influence of other compounds contained in wastewater as naphthalene, benzene, toluene and pyridine indicate that apart from oil fraction, which is removed, the phenol concentration is the only major factor limiting the growth of immobilized cells. Mathematical models are applied to describe the kinetic behavior of immobilized yeast cells. From the analysis of the experimental curves was shown that the obtained values for the apparent rate parameters vary depending on the substrate concentration (μmaxapp from 0.35 to 0.09 h−1 and K sapp from 0.037 to 0.4 g dm−3). The inhibitory effect of the phenol on the obtained yield coefficients was investigated too. It has been shown that covalent immobilization of T. cutaneum whole cells to plastic carrier beads is possible, and that cell viability and phenol degrading activity are maintained after the chemical modification of cell walls during the binding procedure. The results obtained indicate a possible future application of immobilized T. cutaneum for destroying phenol in industrial wastewaters.  相似文献   

13.
The aim of this study was to use whole cell catalysts as tools for modification of selected resin acids in order to obtain value-added functional derivatives. The enzymatic bioconversion capacities of two plant species were tested towards dehydroabietic acid. Dehydroabietic acid (DHA) is an abundant resin acid in conifers, representing a natural wood protectant. It is also one of the constituents found in by-products of the kraft chemical pulping industry. DHA was fed to tobacco (Nicotiana tabacum) and Madagascar periwinkle (Catharanthus roseus) plant cell and tissue cultures and bioconversion product formation was monitored using NMR analysis. Both plant species took up DHA from culture medium, and various types of typical detoxification processes occurred in both cultures. In addition, diverse responses to DHA treatment were observed, including differences in uptake kinetics, chemical modification of added substrate and changes in overall metabolism of the cells. Interestingly, Catharanthus roseus, a host species for pharmaceutically valuable terpenoid indole alkaloids, exhibited a very different bioconversion pattern for exogenously applied DHA than tobacco, which does not possess a terpenoid indole pathway. In tobacco, DHA is readily glycosylated in the carbonyl group, whereas in periwinkle it is proposed that a cytochrome P450-catalyzed enzymatic detoxification reaction takes place before the formation of glycosylated product.  相似文献   

14.
Pronounced spatial nonuniformities in cell density, physiology, and activity frequently arise within densely packed immobilized cell supports. For a more fundamental understanding of immobilized cell phenomena, we have developed high-resolution microfluorimetric procedures to analyze local variations in both immobilized cell loading and growth rate. Fluorescent staining of total cellular DNA provides a measure of local biomass density. Actively growing (DNA synthesizing) cells are marked by pulse-labeling newly synthesized DNA with the thymine analog, bromouracil. An immunofluorescent technique allows subsequent detection of spatial variations in DNA synthesis rates. These procedures enable the influence of mass-transfer limitations and other immobilization effects on cell distribution and activity to be readily quantified. We demonstrate this approach through analysis of the patterns of growth of Escherichia coli entrapped within Sr-alginate gel beads. The experimental techniques are potentially applicable to a variety of other aggregate cell systems.  相似文献   

15.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

16.
Acid blue-15, a complex and resonance-stabilized triphenylmethane (TPM) textile dye, resistant to transformation, was decolorized/degraded in an up-flow immobilized cell bioreactor. A consortium comprised of isolates belonging to Bacillus sp., Alcaligenes sp. and Aeromonas sp. formed a multispecies biofilm on refractory brick pieces used as support material. The TPM dye was degraded to simple metabolic intermediates in the bioreactor with 94% decolorization at a flow rate of 4 ml h–1.  相似文献   

17.
In this study, we demonstrate that the presence of serum in different media plays an important role in inducing transient and reversible adhesion in Jurkat suspension cells. Attachment of Jurkat cells in two distinct media formulations (serum‐fortified and serum‐free) to untreated polystyrene (PS), plasma‐treated PS, and fibronectin‐coated PS was compared. Additional analysis characterized the occurrence of this transient cell adhesion, including attachment rate, reversibility of attachment, and viability and preservation of phenotype in cells during and after attachment. As a demonstration of the utility of this technique, a few applications of transiently adhering Jurkat cells are shown which would be otherwise difficult with freely suspended cells, such as increased gene delivery, confocal‐based apoptosis detection, and real‐time electric‐field effect monitoring in Jurkat cells. Biotechnol. Bioeng. 2010;106: 784–793. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Maatooq GT  Rosazza JP 《Phytochemistry》2005,66(9):1007-1011
The phytoestrogen daidzein was metabolized by Nocardia species NRRL 5646 to give two metabolites obtained by hydroxylation and methylation. These metabolites were spectrally characterized as 7-methoxy-4'-hydroxyisoflavone (isoformononetin) and 7,8-dimethoxy-4'-hydroxyisoflavone. Mortierella isabellina ATCC 38063 was able to metabolize daidzein to the unusual metabolite daidzein-4'-rhamnopyranoside.  相似文献   

19.
In recent decades, the production of palatinose has aroused great interest since this structural isomer of sucrose has interesting potential. We describe a simple and effective method of immobilizing Serratia plymuthica cells in chitosan. The sucrose isomerase activity of immobilized preparations was enhanced many times by activation with fresh nutrient medium and subsequent drying. The preparations obtained were physically very stable with high enzyme activity and excellent operational stability. The effect of temperature, pH and substrate concentration on enzyme activity of the immobilized cells was investigated. Using immobilized cells, a complete conversion of sucrose (40% solution) into palatinose was achieved in 4 h in a "batch"-type enzyme reactor. The use of free or immobilized cells had no effect on the composition of the solution, in particular the sugar content. The palatinose content was 80% and that of trehalulose 7%.  相似文献   

20.
Aspergillus terreus CCT 3320 and A. terreus URM 3571 catalysed the biotransformations of organic β-hydroxyphenyl selenides through oxidation and methylation reactions. The kinetic resolution of (RS)-1-(phenylseleno)-2-propanol (1) via enantioselective oxidation produced (+)-(S)-1 in high enantiomeric excess (>99%) and in a yield of 50% as determined by product isolation. Oxidation of the R-enantiomer of 1, followed by elimination of the propyl moiety and subsequent methylation of the presumed intermediate, led to the formation of methylphenyl-selenide, which was isolated in a yield of 40%. Whole cells of A. terreus also biocatalysed transformations of diphenyldiselenide, benzeneseleninic acid, (RS)-1-(phenylseleno)-2-pentanol and (RS)-1-(phenylseleno)-3-methyl-2-butanol, but not of (RS)-1-(phenylseleno)-2-phenyl-methanol. This is the first report of the biomethylation of organoselenium compounds by whole cells of A. terreus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号