首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases.By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways.These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.  相似文献   

2.
3.
Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive the biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of citric acid cycle-generated intermediates in the regulation of cancer cell proliferation has been recently appreciated. One function of MCTs (monocarboxylate transporters) is to transport the citric acid cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. In the present paper, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared with lactate. Pyruvate supplementation fuelled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fuelled mitochondrial respiration.  相似文献   

4.
We investigated the effect of neuropeptide, the nonsulfated sulfakinin (SK) Zopat‐SK‐1 (pETSDDYGHLRFa) on the mitochondrial oxidative metabolism in the Zophobas atratus larval fat body. Mitochondria were isolated from beetle fat bodies 2 and 24 h after hormone injection. The administration of 20 pmol of Zopat‐SK‐1 to feeding larvae led to decreased mitochondrial oxidative activities in larval fat body. Diminished activities of citrate synthase and the cytochrome pathway, that is, nonphosphorylating and phosphorylating respiration during succinate oxidation, were observed. However, the effect of Zopat‐SK‐1 was more pronounced in fat body of insects after 24 h since hormone application. In hormone‐treated larval fat bodies, mitochondrial respiration was decreased at the level of respiratory chain and the TCA cycle as well as at the level of mitochondrial biogenesis, as indicated by decreased activities of mitochondrial marker enzymes in fat body homogenates. The inhibition of succinate oxidation may indicate the role of Zopat‐SK‐1 in the regulation of mitochondrial complex II activity. Moreover, decreased respiratory chain activity was accompanied by the reduced activity of mitochondrial energy‐dissipating pathway, uncoupling protein 4. The observed decrease in mitochondrial oxidative metabolism may reflect the Zopat‐SK‐1‐induced reduction in the metabolic rate of larval fat body linked to actual energetic demands of animal.  相似文献   

5.
Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.

Pyruvate is supplied by three independent processes that act synergistically to maintain metabolic flux and support plant respiration in a variety of circumstances.  相似文献   

6.
The hypothesis that heat shock protein (HSP) induction depends on inhibition of respiration was tested by examining the effects of heat shock on tricarboxylic acid (TCA) cycle function. In control L929 cell cultures, glucose and exogenous pyruvate were converted primarily to lactate, and glutamine was extensively oxidized, accounting for more than one-half of the calculated ATP production. During heat shock at 42 degrees C, lactate production from all of the labeled substrates and total unlabeled lactate production increased significantly while oxygen consumption increased slightly. TCA cycle oxidation of pyruvate decreased during this period while that of glutamine increased. Uncoupling of oxidative phosphorylation caused large increases in oxygen consumption at both 37 degrees C and 42 degrees C, indicating that the capacity of the respiratory chain is not exceeded during heat shock. The net effect of these alterations in substrate utilization were decreased ATP generation and increased NADH utilization. Both 14CO2 and lactate production declined during the 24-h period after cultures were returned to 37 degrees C. On the basis of these data, we conclude that while inhibition of respiration plays no apparent role, other metabolic consequences of heat shock related to energy metabolism may be involved in HSP induction.  相似文献   

7.
Simon MC 《Cell metabolism》2006,3(3):150-151
Hypoxic cells induce glycolytic enzymes; this HIF-1-mediated metabolic adaptation increases glucose flux to pyruvate and produces glycolytic ATP. Two papers in this issue of Cell Metabolism (Kim et al., 2006; Papandreou et al., 2006) demonstrate that HIF-1 also influences mitochondrial function, suppressing both the TCA cycle and respiration by inducing pyruvate dehydrogenase kinase 1 (PDK1). PDK1 regulation in hypoxic cells promotes cell survival.  相似文献   

8.
9.
《BBA》2022,1863(7):148578
The severe harm of depression to human health and life has attracted global attention, but the exact mechanism is not yet known due to the complicated pathogenesis. The existing antidepressants are far from ideal, indicating it is urgently needed to seek safe and effective drugs from a unique perspective. Based on the hypothesis of “mitochondrial dysfunction” proposed recently, we attempt to focus on the substrates supply of energy metabolism. We applied stable isotope-resolved metabolomics, and revealed that significantly decreased TCA cycle and abnormally increased gluconeogenesis pathway in CUMS rats. Pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) maybe the key metabolic enzymes. This metabolic reprogramming was confirmed through ELISA assays and Western blot analysis. To explore the causes of substrates supply disorder in depression, we conducted the mitochondrial structure-function evaluation. Interestingly, the levels of the mitochondrial pyruvate carrier (MPC) decreased significantly, which is essential for the entry of pyruvic acid into the TCA cycle. Together, MPC, PDH and PC are expected to become potential novel therapeutic targets for treating depressive disorders. This research provides a unique insight for re-cognizing the pathological mechanisms of depression, the novel targets for development of ideal antidepressants, as well as a paradigm for deciphering abnormal metabolic pathways in other metabolic diseases.  相似文献   

10.
Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival.  相似文献   

11.
12.
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.  相似文献   

13.
Current thought is that proliferating cells undergo a shift from oxidative to glycolytic metabolism, where the energy requirements of the rapidly dividing cell are provided by ATP from glycolysis. Drawing on the hexokinase–mitochondrial acceptor theory of insulin action, this article presents evidence suggesting that the increased binding of hexokinase to porin on mitochondria of cancer cells not only accelerates glycolysis by providing hexokinase with better access to ATP, but also stimulates the TCA cycle by providing the mitochondrion with ADP that acts as an acceptor for phosphoryl groups. Furthermore, this acceleration of the TCA cycle stimulates protein synthesis via two mechanisms: first, by increasing ATP production, and second, by provision of certain amino acids required for protein synthesis, since the amino acids glutamate, alanine, and aspartate are either reduction products or partially oxidized products of the intermediates of glycolysis and the TCA cycle. The utilization of oxygen in the course of the TCA cycle turnover is relatively diminished even though TCA cycle intermediates are being consumed. With partial oxidation of TCA cycle intermediates into amino acids, there is necessarily a reduction in formation of CO2 from pyruvate, seen as a relative diminution in utilization of oxygen in relation to carbon utilization. This has been assumed to be an inhibition of oxygen uptake and therefore a diminution of TCA cycle activity. Therefore a switch from oxidative metabolism to glycolytic metabolism has been assumed (the Crabtree effect). By stimulating both ATP production and protein synthesis for the rapidly dividing cell, the binding of hexokinase to mitochondrial porin lies at the core of proliferative energy metabolism. This article further reviews literature on the binding of the isozymes of hexokinase to porin, and on the evolution of insulin, proposing that intracellular insulin-like proteins directly bind hexokinase to mitochondrial porin.  相似文献   

14.
Utilization of glucose by adult brain as its metabolic substrate does not mean that glutamate cannot be synthesized from glucose and subsequently oxidatively degraded. Between 10 and 20% of total pyruvate metabolism in brain occurs as formation of oxaloacetate (OAA), a tricarboxylic acid (TCA) cycle intermediate, from pyruvate plus CO(2). This anaplerotic ('pool-filling') process occurs in astrocytes, which in contrast to neurons express pyruvate carboxylase (PC) activity. Equivalent amounts of pyruvate are converted to acetylcoenzyme A and condensed with oxaloacetate to form citrate (Cit), which is metabolized to alpha-ketoglutarate (generating oxidatively-derived energy), glutamate and glutamine and transferred to neurons in the glutamate-glutamine cycle and used as precursor for transmitter glutamate. Since the blood-brain barrier is poorly permeable to glutamate and its metabolites, net synthesis of glutamate must be followed by degradation of equivalent amounts of glutamate, a cataplerotic ('pool-emptying') process, in which glutamate is converted in the TCA cycle to malate or oxaloacetate (generating additional energy), which exit the cycle to form one molecule pyruvate. To obtain an estimate of the rate of astrocytic oxidation of glutamate the rate of oxygen consumption was measured in primary cultures of mouse astrocytes metabolizing glutamate in the absence of other metabolic substrates. The observed rate is compatible with complete oxidative degradation of glutamate.  相似文献   

15.
Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.  相似文献   

16.
Hypoxia has critical effects on the physiology of organisms. In the yeast Saccharomyces cerevisiae, glycolytic enzymes, including enolase (Eno2p), formed cellular foci under hypoxia. Here, we investigated the regulation and biological functions of these foci. Focus formation by Eno2p was inhibited temperature independently by the addition of cycloheximide or rapamycin or by the single substitution of alanine for the Val22 residue. Using mitochondrial inhibitors and an antioxidant, mitochondrial reactive oxygen species (ROS) production was shown to participate in focus formation. Focus formation was also inhibited temperature dependently by an SNF1 knockout mutation. Interestingly, the foci were observed in the cell even after reoxygenation. The metabolic turnover analysis revealed that [U-13C]glucose conversion to pyruvate and oxaloacetate was accelerated in focus-forming cells. These results suggest that under hypoxia, S. cerevisiae cells sense mitochondrial ROS and, by the involvement of SNF1/AMPK, spatially reorganize metabolic enzymes in the cytosol via de novo protein synthesis, which subsequently increases carbon metabolism. The mechanism may be important for yeast cells under hypoxia, to quickly provide both energy and substrates for the biosynthesis of lipids and proteins independently of the tricarboxylic acid (TCA) cycle and also to fit changing environments.  相似文献   

17.
《Autophagy》2013,9(11):1876-1886
Chronic metabolic stress is related to diseases, whereas autophagy supplies nutrients by recycling the degradative products. Cyclosporin A (CsA), a frequently used immunosuppressant, induces metabolic stress via effects on mitochondrial respiration, and thereby, its chronic usage is often limited. Here we show that autophagy plays a protective role against CsA-induced metabolic stress in kidney proximal tubule epithelial cells. Autophagy deficiency leads to decreased mitochondrial membrane potential, which coincides with metabolic abnormalities as characterized by decreased levels of amino acids, increased tricarboxylic acid (TCA) ratio (the levels of intermediates of the latter part of the TCA cycle, over levels of intermediates in the earlier part), and decreased products of oxidative phosphorylation (ATP). In addition to the altered profile of amino acids, CsA decreased the hyperpolarization of mitochondria with the disturbance of mitochondrial energy metabolism in autophagy-competent cells, i.e., increased TCA ratio and worsening of the NAD+/NADH ratio, coupled with decreased energy status, which suggests that adaptation to CsA employs autophagy to supply electron donors from amino acids via intermediates of the latter part of the TCA cycle. The TCA ratio of autophagy-deficient cells was further worsened with decreased levels of amino acids in response to CsA, and, as a result, the deficiency of autophagy failed to adapt to the CsA-induced metabolic stress. Deterioration of the TCA ratio further worsened energy status. The CsA-induced metabolic stress also activated regulatory genes of metabolism and apoptotic signals, whose expressions were accelerated in autophagy-deficient cells. These data provide new perspectives on autophagy in conditions of chronic metabolic stress in disease.  相似文献   

18.
Metabolic responses of the new neuronal human cell line AGE1.HN to various substrate levels were analyzed in this study showing that reduced substrate and especially pyruvate load improves metabolic efficiency, leading to improved growth and α1-antitrypsin (A1AT) production. The adaptation of the metabolism to different pyruvate and glutamine concentrations was analyzed in detail using a full factorial design. The most important finding was an increasingly inefficient use of substrates as well as the reduction of cell proliferation with increasing pyruvate concentrations in the medium. Cultivations with different feeding profiles showed that the highest viable cell density and A1AT concentration (167% of batch) was reached in the culture with the lowest glucose level and without pyruvate feeding. Analysis of metabolic fluxes in the differently fed cultures revealed a more efficient metabolic phenotype in the cultures without pyruvate feeding. The measured in vitro enzyme activities of the selected enzymes involved in pyruvate metabolism were lower in AGE1.HN compared with CHO cells, which might explain the higher sensitivity and different adaptation of AGE1.HN to increased pyruvate concentrations. The results indicate on the one hand that increasing the connectivity between glycolysis and the TCA cycle might improve substrate use and, finally, the production of A1AT. On the other hand, a better balanced substrate uptake promises a reduction of energy spilling which is increased with increasing substrate levels in this cell line. Overall, the results of this study provide important insights into the regulation of primary metabolism and into the adaptation of AGE1.HN to different substrate levels, providing guidance for further optimization of production cell lines and applied process conditions.  相似文献   

19.
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC‐MS‐based isotope tracer studies with oxygen uptake measurements in a quantitative redox‐balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine‐driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine‐driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.  相似文献   

20.
The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4 + assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号