首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Aims: To examine the killing efficiency of UV KrCl excilamp against Gram‐positive and Gram‐negative bacteria. Methods and Results: Vegetative cells of Bacillus cereus, Bacillus subtilis, Escherichia coli O157:H7, Staphylococcus aureus and Streptococcus pyogenes at initial populations from 102 to 107 colony‐forming units (CFU) ml?1 were treated by KrCl excilamp in sterile Ringer’s solution with and without H2O2. The number of viable cells was determined using spread plating techniques and nutrient agar method with subsequent incubation at 28°C or 37°C for 24 h. At estimated populations of 102–105 CFU ml?1E. coli O157:H7 and Staph. aureus were the most sensitive and showed 100% disinfection within 15 s (29·2 mJ cm?2). Bacillus subtilis was more sensitive to UV treatment than B. cereus. The UV/H2O2 inactivation rate coefficients within this population range were two times higher than those observed for UV treatment alone. No effect of H2O2 was observed at 107 CFU ml?1 for Bacillus sp. and Strep. pyogenes. Conclusions: The narrow‐band UV radiation at 222 nm was effective in the rapid disinfection of bacteria in aqueous suspensions. Significance and Impact of the Study: KrCl excilamps represent UV sources which can be applied for disinfection of drinking water in advanced oxidation processes.  相似文献   

2.
Aims: In this study, we determined the ability of a promising alternative UV technology – a polychromatic emission from a medium‐pressure UV (MP UV) technology – to inhibit the reactivation of UV‐irradiated Giardia lamblia cysts. Methods and Results: A UV‐collimated beam apparatus was used to expose shallow suspensions of purified G. lamblia cysts in PBS (pH 7·2) or filtered drinking water to a low dose (1 mJ cm?2) of MP UV irradiation. After UV irradiation, samples were exposed to two repair conditions (light or dark) and two temperature conditions (25°C or 37°C for 2–4 h). The inactivation of G. lamblia cysts by MP UV was very extensive, and c. 3 log10 inactivation was achieved with a dose of 1 mJ cm?2. Meanwhile, there was no apparent reactivation (neither in vivo nor in vitro) of UV‐irradiated G. lamblia under the conditions tested. Conclusion: The results of this study indicated that, unlike the traditional low‐pressure (LP) UV technology, an alternative UV technology (MP UV) could inhibit the reactivation of UV‐irradiated G. lamblia cysts even when the cysts were exposed to low UV doses. Significance and Impact of the Study: It appears that alternative UV technology has some advantages over the traditional LP UV technology in drinking water disinfection because of their high level of inactivation against G. lamblia cysts and also effective inhibition of reactivation in UV‐irradiated G. lamblia cysts.  相似文献   

3.
Adenovirus is recognized as the most UV-resistant waterborne pathogen of concern to public health microbiologists. The U.S. EPA has stipulated that a UV fluence (dose) of 186 mJ cm−2 is required for 4-log inactivation credit in water treatment. However, all adenovirus inactivation data to date published in the peer-reviewed literature have been based on UV disinfection experiments using UV irradiation at 253.7 nm produced from a conventional low-pressure UV source. The work reported here presents inactivation data for adenovirus based on polychromatic UV sources and details the significant enhancement in inactivation achieved using these polychromatic sources. When full-spectrum, medium-pressure UV lamps were used, 4-log inactivation of adenovirus type 40 is achieved at a UV fluence of less than 60 mJ cm−2 and a surface discharge pulsed UV source required a UV fluence of less than 40 mJ cm−2. The action spectrum for adenovirus type 2 was also developed and partially explains the improved inactivation based on enhancements at wavelengths below 230 nm. Implications for water treatment, public health, and the future of UV regulations for virus disinfection are discussed.  相似文献   

4.

Background

Environmental surfaces play an important role in the transmission of healthcare-associated pathogens. Because environmental cleaning is often suboptimal, there is a growing demand for safe, rapid, and automated disinfection technologies, which has lead to a wealth of novel disinfection options available on the market. Specifically, automated ultraviolet-C (UV-C) devices have grown in number due to the documented efficacy of UV-C for reducing healthcare-acquired pathogens in hospital rooms. Here, we assessed and compared the impact of pathogen concentration, organic load, distance, and radiant dose on the killing efficacy of two analogous UV-C devices.

Principal Findings

The devices performed equivalently for each impact factor assessed. Irradiation delivered for 41 minutes at 4 feet from the devices consistently reduced C. difficile spores by ∼ 3 log10CFU/cm2, MRSA by>4 log10CFU/cm2, and VRE by >5 log10CFU/cm2. Pathogen concentration did not significantly impact the killing efficacy of the devices. However, both a light and heavy organic load had a significant negative impacted on the killing efficacy of the devices. Additionally, increasing the distance to 10 feet from the devices reduced the killing efficacy to ≤3 log10CFU/cm2 for MRSA and VRE and <2 log10CFU/cm2 for C.difficile spores. Delivery of reduced timed doses of irradiation particularly impacted the ability of the devices to kill C. difficile spores. MRSA and VRE were reduced by >3 log10CFU/cm2 after only 10 minutes of irradiation, while C. difficile spores required 40 minutes of irradiation to achieve a similar reduction.

Conclusions

The UV-C devices were equally effective for killing C. difficile spores, MRSA, and VRE. While neither device would be recommended as a stand-alone disinfection procedure, either device would be a useful adjunctive measure to routine cleaning in healthcare facilities.  相似文献   

5.
Aims: To determine inactivation profiles of three human norovirus (NoV) surrogate viruses and coliphage MS2 by ultraviolet (UV) irradiation and the protective effect of cell association on UV inactivation. Methods and Results: The inactivation rate for cell‐free virus or intracellular echovirus 12 was determined by exposure to 254‐nm UV light at fluence up to 100 mJ cm?2. The infectivity of murine norovirus (MNV), feline calicivirus (FCV) and echovirus 12 was determined by cell culture infectivity in susceptible host cell lines, and MS2 infectivity was plaque assayed on Escherichia coli host cells. The UV fluencies to achieve 4‐log10 inactivation were 25, 29, 30 and 70 (mJ cm?2) for cell‐free FCV, MNV, echovirus 12 and MS2, respectively. However, a UV fluence of 85 mJ cm?2 was needed to inactivate intracellular echovirus 12 by 4 log10. Conclusions: Murine norovirus and echoviruses 12 are more conservative surrogates than FCV to predict the UV inactivation response of human NoV. Intracellular echovirus 12 was 2·8‐fold more resistant to UV irradiation than cell‐free one. Significance and Impact of the Study: Variation in UV susceptibilities among NoV surrogate viruses and a likely protective effect of cell association on virus susceptibility to UV irradiation should be considered for effective control of human NoV in water.  相似文献   

6.
Concerns surrounding the contamination of infrastructure and equipment with biowarfare agents have led to the development of antimicrobial surfaces/coatings that are designed to “self-sterilize.” Surfaces will likely be contaminated via an aerosol exposure and thus antimicrobial efficacy measurements should also be performed using biological aerosols. Standard methods that use microbial agents suspended in aqueous buffers may provide misleading results that overestimate the performance of the surface. A settling chamber is the most common instrument for applying biological aerosols to surfaces. However, settling chambers have some drawbacks (e.g., slow loading times, large footprint, variable loading, etc.) that make them undesirable for many applications. We have developed a Dry Aerosol Deposition Device (DADD) that uses impaction rather than settling to load surfaces with biological aerosols. The use of impaction allows for rapid and highly reproducible loading of microorganisms onto surfaces. We have demonstrated that the DADD can deliver both Bacillus atrophaeus spores and Staphylococcus aureus vegetative cells to glass coupons at concentrations exceeding 1 × 104 CFU/cm2. The average coefficient of variation (CV) for sample-to-sample loading within an experiment was 13.6% for spores and 6.1% for S. aureus cells. The DADD is also a relatively simple and inexpensive device that can easily be contained within a 4-foot biological safety cabinet.  相似文献   

7.
Little information regarding the effectiveness of UV radiation on the inactivation of caliciviruses and enteric adenoviruses is available. Analysis of human calicivirus resistance to disinfectants is hampered by the lack of animal or cell culture methods that can determine the viruses' infectivity. The inactivation kinetics of enteric adenovirus type 40 (AD40), coliphage MS-2, and feline calicivirus (FCV), closely related to the human caliciviruses based on nucleic acid organization and capsid architecture, were determined after exposure to low-pressure UV radiation in buffered demand-free (BDF) water at room temperature. In addition, UV disinfection experiments were also carried out in treated groundwater with FCV and AD40. AD40 was more resistant than either FCV or coliphage MS-2 in both BDF water and groundwater. The doses of UV required to achieve 99% inactivation of AD40, coliphage MS-2, and FCV in BDF water were 109, 55, and 16 mJ/cm2, respectively. The doses of UV required to achieve 99% inactivation of AD40, coliphage MS-2, and FCV in groundwater were slightly lower than those in BDF water. FCV was inactivated by 99% by 13 mJ/cm2 in treated groundwater. A dose of 103 mJ/cm2 was required for 99% inactivation of AD40 in treated groundwater. The results of this study indicate that if FCV is an adequate surrogate for human caliciviruses, then their inactivation by UV radiation is similar to those of other single-stranded RNA enteric viruses, such as poliovirus. In addition, AD40 appears to be more resistant to UV disinfection than previously reported.  相似文献   

8.
Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25°C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm2 (=30 J/m2), the reduction reached the cell culture assay detection limit of ~3 log10. At UV doses of 1.2 and 3 mJ/cm2, the log10 reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage.  相似文献   

9.
A synergistic effect between silver and UV radiation has been observed that can appreciably enhance the effectiveness of UV radiation for inactivation of viruses. At a fluence of ca. 40 mJ/cm2, the synergistic effect between silver and UV was observed at silver concentrations as low as 10 μg/liter (P < 0.0615). At the same fluence, an MS-2 inactivation of ca. 3.5 logs (99.97%) was achieved at a silver concentration of 0.1 mg/liter, a significant improvement (P < 0.0001) over the ca. 1.8-log (98.42%) inactivation of MS-2 at ca. 40 mJ/cm2 in the absence of silver. Modified Chick-Watson kinetics were used to model the synergistic effect of silver and UV radiation. For an MS-2 inactivation of 4 logs (99.99%), the coefficient of dilution (n) was determined to be 0.31, which suggests that changes in fluence have a greater influence on inactivation than does a proportionate change in silver concentration.  相似文献   

10.
Aim: To investigate the viability, surface characteristics and ability of spores of a Geobacillus sp. isolated from a milk powder production line to adhere to stainless steel surfaces before and after a caustic (NaOH) wash used in clean‐in‐place regimes. Methods and Results: Exposing sessile spores to 1% NaOH at 65°C for 30 min decreased spore viability by two orders of magnitude. The zeta potential of the caustic treated spores decreased from ?20 to ?32 mV and they became more hydrophobic. Transmission electron microscopy revealed that caustic treated spores contained breaks in their spore coat. Under flow conditions, caustic treated spores suspended in 0·1 mol l?1 KCl were shown to attach to stainless steel in significantly greater numbers (4·6 log10 CFU cm?2) than untreated spores (3·6 log10 CFU cm?2). Conclusions: This research suggests that spores surviving a caustic wash will have a greater propensity to attach to stainless steel surfaces. Significance of Study: The practice of recycling caustic wash solutions may increase the risk of contaminating dairy processing surfaces with spores.  相似文献   

11.
Cryptosporidium parvum represents a challenge to the water industry and a threat to public health. In this study, we developed a cell culture-quantitative PCR assay to evaluate the inactivation of C. parvum with disinfectants. The assay was validated by using a range of disinfectants in common use in the water industry, including low-pressure UV light (LP-UV), ozone, mixed oxidants (MIOX), and chlorine. The assay was demonstrated to be reliable and sensitive, with a lower detection limit of a single infectious oocyst. Effective oocyst inactivation was achieved (>2 log10 units) with LP-UV (20 mJ/cm2) or 2 mg of ozone/liter (for 10 min). MIOX and chlorine treatments of oocysts resulted in minimal effective disinfection, with <0.1 log10 unit being inactivated. These results demonstrate the inability of MIOX to inactivate Cryptosporidium. The assay is a valuable tool for the evaluation of disinfection systems for drinking water and recycled water.  相似文献   

12.

Aims

An extra‐long‐range quantitative PCR (LR‐qPCR) method was developed for estimating genome damage to adenovirus 2 caused by UV irradiation. The objective was to use LR‐qPCR as a rapid method to determine adenovirus UV inactivation.

Methods

The LR‐qPCR consisted of two steps: a long‐range PCR (up to 10 kb fragment) and a real‐time, quantitative (q) PCR for quantifying the products of the first PCR. We evaluated LR‐qPCR with adenovirus irradiated with medium‐pressure (MP, polychromatic emission) and low‐pressure (LP, 254 nm) mercury vapour lamps and compared results with cell culture infectivity.

Results

Using LR‐qPCR, a fragment of 6 kb estimated DNA damage in a linear relationship to doses between 0 and 20 mJ cm?2, and a 1‐kb fragment related linearly to doses between 20 and 100 mJ cm?2. The LR‐qPCR results for the 6‐kb fragment were similar to infectivity assays results for adenovirus exposed to MP UV. For adenovirus irradiated with LP lamps, LR‐qPCR results for the shorter fragment size (1 kb) were similar to reduction in viral infectivity. No difference was observed between 10 and 6 kb LR‐qPCR results.

Conclusion

The LR‐qPCR can be used as a tool for estimating DNA damage caused by UV in adenovirus. The LR‐qPCR results were related to reduction in viral infectivity.

Significance and Impact of the Study

The use of LR‐qPCR to determine DNA damage and estimate inactivation of adenovirus 2 from UV disinfection allows for same‐day results compared with >7 days required for cell culture. This accelerates adenovirus inactivation results for the water industry where adenovirus is used as a representative virus for crediting UV systems. This PCR approach provides a framework that can be used for other viral viability assays using the inhibition of amplification of viral nucleic acid after pretreatments, such as propidium monoazide, and for cellular biology studies of DNA damage.  相似文献   

13.
In this study, it was aimed to develop a novel disinfectant from various essential oils containing active components with antimicrobial activity. The mixture of oregano, cinnamon and clove oils (1 : 1 : 1) with 10% oil concentration (SOM) was used as potential disinfectant on various areas and showed the highest antimicrobial activity among oil combinations tested. SOM reduced the numbers of total mesophilic aerobic bacteria (TMAB; 2·27 log CFU per 25 cm2) and Escherichia coli (4·60 log CFU per 25 cm2) under the detection limits. Application of SOM (1, 2, 3, 4 and 6%) into incubators reduced TMAB and mould-yeast counts of incubator air by 82·9 and 100% respectively. SOM application (3%) into ambient air also reduced its TMAB and mould-yeast counts by 92 and 84·6% respectively. While ethanol is commonly used for the disinfection of environments, equipment and surfaces, SOM is an important alternative that may also be used for the disinfection of various surfaces as well as air.  相似文献   

14.
BackgroundSchistosomiasis is a parasitic disease that is transmitted by skin contact with waterborne schistosome cercariae. Mass drug administration with praziquantel is an effective control method, but it cannot prevent reinfection if contact with cercariae infested water continues. Providing safe water for contact activities such as laundry and bathing can help to reduce transmission. In this study we examine the direct effect of UV light on Schistosoma mansoni cercariae using ultraviolet light-emitting diodes (UV LEDs) and a low-pressure (LP) mercury arc discharge lamp.MethodologyS. mansoni cercariae were exposed to UV light at four peak wavelengths: 255 nm, 265 nm, 285 nm (UV LEDs), and 253.7 nm (LP lamp) using bench scale collimated beam apparatus. The UV fluence ranged from 0–300 mJ/cm2 at each wavelength. Cercariae were studied under a stereo-microscope at 0, 60, and 180 minutes post-exposure and the viability of cercariae was determined by assessing their motility and morphology.ConclusionVery high UV fluences were required to kill S. mansoni cercariae, when compared to most other waterborne pathogens. At 265 nm a fluence of 247 mJ/cm2 (95% confidence interval (CI): 234–261 mJ/cm2) was required to achieve a 1-log10 reduction at 0 minutes post-exposure. Cercariae were visibly damaged at lower fluences, and the log reduction increased with time post-exposure at all wavelengths. Fluences of 127 mJ/cm2 (95% CI: 111–146 mJ/cm2) and 99 mJ/cm2 (95% CI: 85–113 mJ/cm2) were required to achieve a 1-log10 reduction at 60 and 180 minutes post-exposure at 265 nm. At 0 minutes post-exposure 285 nm was slightly less effective, but there was no statistical difference between 265 nm and 285 nm after 60 minutes. The least effective wavelengths were 255 nm and 253.7 nm. Due to the high fluences required, UV disinfection is unlikely to be an energy- or cost-efficient water treatment method against schistosome cercariae when compared to other methods such as chlorination, unless it can be demonstrated that UV-damaged cercariae are non-infective using alternative assay methods or there are improvements in UV LED technology.  相似文献   

15.
UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm2, respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm2, and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm2. Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm2 for all three pathogens, with negligible generation of injured cells.  相似文献   

16.
Three strains of Helicobacter pylori were exposed to UV light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment regimens. Greater than 4-log10 inactivation was demonstrated on all three strains at fluences of less than 8 mJ cm−2.  相似文献   

17.
To accurately quantify airborne Aspergillus fumigatus (A. fumigatus) spores in rabbit houses, the real-time polymerase chain reaction (real-time PCR) and culture-based counting method (CCM) were employed to determine the airborne A. fumigatus spore concentrations. The results showed that, of the three rabbit houses (A, B, and C), the average concentrations of airborne A. fumigatus spores determined by real-time PCR were 3.0 × 103, 3.3 × 103, and 1.5 × 103 spores/m3 air, respectively, while those determined by CCM were 2.5 × 102, 2.8 × 102, and 1.1 × 102 colony-forming unit/m3 air (CFU/m3 air), respectively, i.e., the former concentration was 12–14 times higher than the latter one. Therefore, the conventional CCM underestimated the concentrations of airborne fungal spores, and it is insufficient to determine the microbial aerosol concentration and evaluate the health risk only using CCM.  相似文献   

18.
Several models (animal caliciviruses, poliovirus 1 [PV1], and F-specific RNA bacteriophages) are usually used to predict inactivation of nonculturable viruses. For the same UV fluence, viral inactivation observed in the literature varies from 0 to 5 logs according to the models and the methods (infectivity versus molecular biology). The lack of knowledge concerning the mechanisms of inactivation due to UV prevents us from selecting the best model. In this context, determining if viral genome degradation may explain the loss of infectivity under UV radiation becomes essential. Thus, four virus models (PV1 and three F-specific RNA phages: MS2, GA, and Qβ) were exposed to UV radiation from 0 to 150 mJ · cm−2. PV1 is the least-resistant virus, while MS2 and GA phages are the most resistant, with phage Qβ having an intermediate sensitivity; respectively, 6-log, 2.3-log, 2.5-log, and 4-log decreases for 50 mJ · cm−2. In parallel, analysis of RNA degradation demonstrated that this phenomenon depends on the fragment size for PV1 as well as for MS2. Long fragments (above 2,000 bases) for PV1 and MS2 fell rapidly to the background level (>1.3-log decrease) for 20 mJ · cm−2 and 60 mJ · cm− 2, respectively. Nevertheless, the size of the viral RNA is not the only factor affecting UV-induced RNA degradation, since viral RNA was more rapidly degraded in PV1 than in the MS2 phage with a similar size. Finally, extrapolation of inactivation and UV-induced RNA degradation kinetics highlights that genome degradation could fully explain UV-induced viral inactivation.  相似文献   

19.
The aim of this study was to quantify reaerosolization of microorganisms caused by walking on contaminated flooring to assess the risk to individuals accessing areas contaminated with pathogenic organisms, for example, spores of Bacillus anthracis. Industrial carpet and polyvinyl chloride (PVC) floor coverings were contaminated with aerosolized spores of Bacillus atrophaeus by using an artist airbrush to produce deposition of ∼103 to 104 CFU · cm−2. Microbiological air samplers were used to quantify the particle size distribution of the aerosol generated when a person walked over the floorings in an environmental chamber. Results were expressed as reaerosolization factors (percent per square centimeter per liter), to represent the ratio of air concentration to surface concentration generated. Walking on carpet generated a statistically significantly higher reaerosolization factor value than did walking on PVC (t = 20.42; P < 0.001). Heavier walking produced a statistically significantly higher reaerosolization factor value than did lighter walking (t = 12.421; P < 0.001). Height also had a statistically significant effect on the reaerosolization factor, with higher rates of recovery of B. atrophaeus at lower levels, demonstrating a height-dependent gradient of particle reaerosolization. Particles in the respirable size range were recovered in all sampling scenarios (mass mean diameters ranged from 2.6 to 4.1 μm). The results of this study can be used to produce a risk assessment of the potential aerosol exposure of a person accessing areas with contaminated flooring in order to inform the choice of appropriate respiratory protective equipment and may aid in the selection of the most suitable flooring types for use in health care environments, to reduce aerosol transmission in the event of contamination.  相似文献   

20.
Inactivation of Caliciviruses   总被引:10,自引:7,他引:3       下载免费PDF全文
The viruses most commonly associated with food- and waterborne outbreaks of gastroenteritis are the noroviruses. The lack of a culture method for noroviruses warrants the use of cultivable model viruses to gain more insight on their transmission routes and inactivation methods. We studied the inactivation of the reported enteric canine calicivirus no. 48 (CaCV) and the respiratory feline calicivirus F9 (FeCV) and correlated inactivation to reduction in PCR units of FeCV, CaCV, and a norovirus. Inactivation of suspended viruses was temperature and time dependent in the range from 0 to 100°C. UV-B radiation from 0 to 150 mJ/cm2 caused dose-dependent inactivation, with a 3 D (D = 1 log10) reduction in infectivity at 34 mJ/cm2 for both viruses. Inactivation by 70% ethanol was inefficient, with only 3 D reduction after 30 min. Sodium hypochlorite solutions were only effective at >300 ppm. FeCV showed a higher stability at pH <3 and pH >7 than CaCV. For all treatments, detection of viral RNA underestimated the reduction in viral infectivity. Norovirus was never more sensitive than the animal caliciviruses and profoundly more resistant to low and high pH. Overall, both animal viruses showed similar inactivation profiles when exposed to heat or UV-B radiation or when incubated in ethanol or hypochlorite. The low stability of CaCV at low pH suggests that this is not a typical enteric (calici-) virus. The incomplete inactivation by ethanol and the high hypochlorite concentration needed for sufficient virus inactivation point to a concern for decontamination of fomites and surfaces contaminated with noroviruses and virus-safe water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号