首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BtuB is a β‐barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm‐exposed N‐terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's β‐barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which—among other factors—differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all‐atom molecular dynamics, we simulate conformational fluctuations of several X‐ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3–4, 5–6, and 15–16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X‐ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The amino acid sequence of the scallop myosin essential light chain (SELC) was determined from analysis of the intact, S-carboxymethylated protein and peptides produced by cleavage at its four methionine residues by cyanogen bromide digestion and at its six arginine residues by citraconylation and tryptic digestion. SELC contains 156 amino acid residues, including three cysteines, four tyrosines, one tryptophan, two histidines, and an unblocked amino-terminal proline. The protein has a calculated Mr of 17,616. SELC is an acidic protein, with a net charge of 18- at physiological pH. Comparative analysis reveals four homologous domains (I-IV), which arose by reduplication of a gene for a small, ancestral calcium binding protein. Each domain has a helix-loop-helix structure, with all the ligands for calcium binding located within a 12-residue segment that spans the loop and the first turn of the following helix. Potential calcium binding sequences were found in the ancestral sites III (residues 94-105) and IV (residues 132-143). Mutations in critical positions in domains I and II seem to preclude the possibility of calcium binding in the amino-terminal half of SELC. An unexpected third potential calcium binding segment (at residues 119-130, predicted to be in helical conformation) was found in domain IV. A reactive thiol group (Cys-78) that is involved in binding of regulatory light chains was tentatively located in an extended "linker region", which connects the two halves of the molecule.  相似文献   

3.
To establish an approach to obtain the site-specific calcium binding affinity of EF-hand proteins, we have successfully designed a series of model proteins, each containing the EF-hand calcium-binding loop 3 of calmodulin, but with increasing numbers of Gly residues linking the loop to domain 1 of CD2. Structural analyses, using different spectroscopic methods, have shown that the host protein is able to retain its native structure after insertion of the 12-residue calcium-binding loop and retains a native thermal stability and thermal unfolding behavior. In addition, calcium binding to the engineered CD2 variants does not result in a significant change from native CD2 conformation. The CD2 variant with two Gly linkers has been shown to have the strongest metal binding affinity to Ca(II) and La(III). These experimental results are consistent with our molecular modeling studies, which suggest that this protein with the engineered EF-loop has a calmodulin-like calcium binding geometry and backbone conformation. The addition of two Gly linkers increases the flexibility of the inserted EF-loop 3 from calmodulin, which is essential for the proper binding of metal ions.  相似文献   

4.
CaVP (calcium vector protein) is a Ca(2+) sensor of the EF-hand protein family which is highly abundant in the muscle of Amphioxus. Its three-dimensional structure is not known, but according to the sequence analysis, the protein is composed of two domains, each containing a pair of EF-hand motifs. We determined recently the solution structure of the C-terminal domain (Trp81-Ser161) and characterized the large conformational and dynamic changes induced by Ca(2+) binding. In contrast, the N-terminal domain (Ala1-Asp86) has lost the capacity to bind the metal ion due to critical mutations and insertions in the two calcium loops. In this paper, we report the solution structure of the N-terminal domain and its backbone dynamics based on NMR spectroscopy, nuclear relaxation, and molecular modeling. The well-resolved three-dimensional structure is typical of a pair of EF-hand motifs, joined together by a short antiparallel beta-sheet. The tertiary arrangement of the two EF-hands results in a closed-type conformation, with near-antiparallel alpha-helices, similar to other EF-hand pairs in the absence of calcium ions. To characterize the internal dynamics of the protein, we measured the (15)N nuclear relaxation rates and the heteronuclear NOE effect in (15)N-labeled N-CaVP at a magnetic field of 11.74 T and 298 K. The domain is mainly monomeric in solution and undergoes an isotropic Brownian rotational diffusion with a correlation time of 7.1 ns, in good agreement with the fluorescence anisotropy decay measurements. Data analysis using a model-free procedure showed that the amide backbone groups in the alpha-helices and beta-strands undergo highly restricted movements on a picosecond to nanosecond time scale. The amide groups in Ca(2+) binding loops and in the linker fragment also display rapid fluctuations with slightly increased amplitudes.  相似文献   

5.
Integrin alphaXbeta2 (CD11c/CD18), which binds several ligands such as fibrinogen and iC3b, has important roles in leukocyte functions including phagocytosis and migration. Establishment of structure and functional relationship in alphaX I-domain, which is a ligand-binding moiety, is important in understanding leukocyte biology and integrin function. Previously we showed that two loops (alpha3-alpha4, betaD-alpha5) around a ligand-binding face of alphaX I-domain are important for the binding of the fibrinogen molecule. In this study, we took the further step of identifying critical residues in these loops and in a supportive loop (betaF-alpha7) for fibrinogen fragment E, the central domain of fibrinogen. The residues S(199) and Q(202) in the alpha3-alpha4 loop and K(243), Y(250) in the betaD-alpha5 loop are critical for the ligand. The residues K(242), D(249), K(251), and D(252) are important but less critical for fibrinogen fragment E. The involvement of the residues in the 3-dimensional model of the I-domain suggests that several amino acid sequences in fibrinogen fragment E are responsible for alphaX I-domain. Sequence comparisons with alphaM I-domain reveal that most of the critical residues shown in alphaX I-domain are also conserved in alphaM and may have important roles in fibrinogen central domain recognition in alphaM I-domain as well.  相似文献   

6.
Analysis of sequence similarity and comparison of the three-dimensional (3D) structures of troponin C and calmodulin have revealed a sequence in the central helix of calmodulin with a high probability for bending. The three amino acids known to form a bend in the N-terminal portion of troponin C are also found in the central helix of calmodulin. The modelling of a bent calmodulin structure, using the dihedral angles of the three residues in the bend of troponin C as a 3D template, results in a conformation of calmodulin where the N- and C-terminal domains are able to form contacts. Dynamics simulations starting from the X-ray structure of calmodulin and from the modelled bent calmodulin were carried out to compare flexibility and correlated movements of Ca2+ in the binding loops. Both conformations of calmodulin remained stable during the period of simulation. In the simulation of calmodulin in the extended form, the motions of the Ca2+ atoms in the two domains (Ca2+1 and Ca2+2 in one domain, and Ca2+3 and Ca2+4 in the other) are correlated. In the simulation of the bent form, an additional correlation between the Ca atoms in the two different domains is observed. The results are compatible with the occurrence of a bent conformation of calmodulin in the presence of targets, and with increased Ca2+ affinity and cooperativity of the Ca(2+)-binding loops in the calmodulin-peptide complexes.  相似文献   

7.
The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.  相似文献   

8.
The structure determination of apotransketolase and the comparison of its three-dimensional structure with that of the holoenzyme has revealed that no large conformational changes are associated with cofactor binding. Two loops at the active site are flexible in the apoenzyme which enables ThDP to reach its binding site. Binding of the cofactor induces defined conformations for these two loops at the active site. One of these loops is directly involving in binding of the cofactors, Ca2+ and ThDP. This loop acts like a flap which closes off the diphosphate binding site. After binding of the cofactor, residues of this loop form interactions to residues of loop 383-398 from the second subunit. These interactions stabilize the conformation of the two loops from a flexible to a 'closed' conformation.  相似文献   

9.
The P13K SH3 domain, residues 1 to 85 of the P1 – 3 kinase p85 subunit, has been characterized by X-ray diffraction. Crystals belonging to space groupP43212 diffract to 2.0 Å resolution and the structure was phased by single isomorphous replacement and anomalous scattering (SIRAS). As expected, the domain is a compact β barrel with an over-all conformation very similar to the independently determined NMR structures. The X-ray structure illuminates a discrepancy between the two NMR structures on the conformation of the loop region unique to P13K SH3. Furthermore, the ligand binding pockets of P13K SH3 domain are occupied by amino acid residues from symmetry-related P13K SH3 molecules: the C-terminal residues I(82) SPP of one and R18 of another. The interaction modes clearly resemble those observed for the P13K SH3 domain complexed with the synthetic peptide RLP1, a class 1 ligand, although there are significant differences. The solid-state interactions suggest a model of protein – protein aggregation that could be mediated by SH3 domains.  相似文献   

10.
The C2 domain of cytosolic phospholipase A2 (cPLA2) is involved in the Ca2+-dependent membrane binding of this protein. To identify protein residues in the C2 domain of cPLA2 essential for its Ca2+ and membrane binding, we selectively mutated Ca2+ ligands and putative membrane-binding residues of cPLA2 and measured the effects of mutations on its enzyme activity, membrane binding affinity, and monolayer penetration. The mutations of five Ca2+ ligands (D40N, D43N, N65A, D93N, N95A) show differential effects on the membrane binding and activation of cPLA2, indicating that two calcium ions bound to the C2 domain have differential roles. The mutations of hydrophobic residues (F35A, M38A, L39A, Y96A, Y97A, M98A) in the calcium binding loops show that the membrane binding of cPLA2 is largely driven by hydrophobic interactions resulting from the penetration of these residues into the hydrophobic core of the membrane. Leu39 and Val97 are fully inserted into the membrane, whereas Phe35 and Tyr96 are partially inserted. Finally, the mutations of four cationic residues in a beta-strand (R57E/K58E/R59E/R61E) have modest and negligible effects on the binding of cPLA2 to zwitterionic and anionic membranes, respectively, indicating that they are not directly involved in membrane binding. In conjunction with our previous study on the C2 domain of protein kinase C-alpha (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), these results demonstrate that C2 domains are not only a membrane docking unit but also a module that triggers membrane penetration of protein and that individual Ca2+ ions bound to the calcium binding loops play differential roles in the membrane binding and activation of their parent proteins.  相似文献   

11.
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.  相似文献   

12.
EL5, a RING-H2 finger protein, is rapidly induced by N-acetylchitooligosaccharides in rice cell. We expressed the EL5 RING-H2 finger domain in Escherichia coli and determined its structure in solution by NMR spectroscopy. The EL5 RING-H2 finger domain consists of two-stranded beta-sheets (beta1, Ala(147)-Phe(149); beta2, Gly(156)-His(158)), one alpha-helix (Cys(161)-Leu(166)), and two large N- and C-terminal loops. It is stabilized by two tetrahedrally coordinated zinc ions. This structure is similar to that of other RING finger domains of proteins of known function. From structural analogies, we inferred that the EL5 RING-H2 finger is a binding domain for ubiquitin-conjugating enzyme (E2). The binding site is probably formed by solvent-exposed hydrophobic residues of the N- and C-terminal loops and the alpha-helix. We demonstrated that the fusion protein with EL5-(96-181) and maltose-binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitin-activating enzyme (E1), and a rice E2 protein, OsUBC5b. This supported the idea that the EL5 RING finger domain is essential for ubiquitin-ligase activity of EL5. By NMR titration experiments, we identified residues that are critical for the interaction between the EL5 RING-H2 finger and OsUBC5b. We conclude that the RING-H2 finger domain of EL5 is the E2 binding site of EL5.  相似文献   

13.
Cyclic AMP is a ubiquitous secondary message that regulates a large variety of functions. The protein structural motif that binds cAMP is highly conserved with the exception of loops 3 and 4, whose structure and length are variable. The cAMP receptor protein of Escherichia coli, CRP, was employed as a model system to elucidate the functional roles of these loops. Based on the sequence differences between CRP and cyclic nucleotide gated channel, three mutants of CRP were constructed: deletion (residues 54-56 in loop 3 were deleted), insertion (loop 4 was lengthened by 5 residues between Glu-78 and Gly-79) and double mutants. The effects of these mutations on the structure and function of CRP were monitored. Results show that the deletion and insertion mutations do not significantly change the secondary structure of CRP, although the tertiary and quaternary structures are perturbed. The functional data indicate that loop 3 modulates the binding affinities of cAMP and DNA. Although the lengthened loop 4 may have some fine-tuning functions, the specific function of the original loop 4 of CRP remains uncertain. The function consequences of mutation in loop 3 of CRP are similar to that of site A and site B in the regulatory subunits of cyclic AMP-dependent protein kinases. Thus, the roles played by loop 3 in CRP may represent a more common mechanism employed by cyclic nucleotide binding domain in modulating ligand binding affinity and intramolecular communication.  相似文献   

14.
We have used molecular dynamics simulations to investigate the effect of phosphorylation and mutation on the cytoplasmic domain of phospholamban (PLB), a 52-residue protein that regulates the calcium pump in cardiac muscle. Simulations were carried out in explicit water systems at 300 K for three peptides spanning the first 25 residues of PLB: wild-type (PLB(1-25)), PLB(1-25) phosphorylated at Ser16 and PLB(1-25) with the R9C mutation, which is known to cause human heart disease. The unphosphorylated peptide maintains a helical conformation from 3 to 15 throughout a 26-ns simulation, in agreement with spectroscopic data. Comparison with simulations of a fourth peptide truncated at Pro21 showed the importance of the region from 17 to 21 in preventing local unfolding of the helix. The results suggest that residues 11-16 are more likely to unfold when specific capping motifs are not present. It is proposed that protein kinase A exploits the intrinsic flexibility of the 11-21 region when binding PLB. In agreement with available CD and NMR data, the simulations show a decrease in the helical content upon phosphorylation. The phosphorylated peptide is characterized by helix spanning residues 3-11, followed by a turn that optimizes the salt-bridge interaction between the side chains of the phosphorylated Ser-16 and Arg-13. Replacing Arg-9 with Cys results in unfolding of the helix from C9 and an overall decrease of the helical conformation. The simulations show that initiation of unfolding is due to increased solvent accessibility of the backbone atoms near the smaller Cys. It is proposed that the loss of inhibitory potency upon Ser-16 phosphorylation or R9C mutation of PLB is due to a similar mechanism, in which the partial unfolding of the cytoplasmic helix of PLB results in a conformation that interacts with the cytoplasmic domain of the calcium pump to relieve its inhibition.  相似文献   

15.
ras-p21 protein binds to the son-of-sevenless (SOS) guanine nucleotide-exchange promoter that allows it to exchange GDP for GTP. Previously, we performed molecular dynamics calculations on oncogenic (Val 12-) and wild-type ras-p21 bound to SOS. By superimposing the average structures of these two complexes, we identified four domains (residues 631-641, 676-691, 718-729, and 994-1004) in SOS that change conformation and were candidates for being effector domains. These calculations were performed in the absence of three crystallographically undefined loops (i.e., residues 591-596, 654-675, and 742-751). We have now modeled these loops into the SOS structure and have re-performed the dynamics calculations. We find that all three loop domains undergo large changes in conformation that involve mostly changes in their positioning and not their individual conformations. We have also identified another potential effector domain (i.e., residues 980-989). Overall, our current results suggest that SOS interactions with oncogenic ras-p21 may enhance ras-p21 mitogenic signaling through prolonging its activation by maintaining its binding to GTP and by allowing its effector domains to interact with intracellular targets.  相似文献   

16.
Laine E  Yoneda JD  Blondel A  Malliavin TE 《Proteins》2008,71(4):1813-1829
We analyzed the conformational plasticity of calmodulin (CaM) when it is bound to the oedema factor (EF) of Bacillus anthracis and its response to calcium complexation with molecular dynamics (MD) simulations. The EF-CaM complex was simulated during 15 ns for three different levels of calcium bound to CaM. They were respectively no calcium ion (EF-(Apo-CaM)), two calcium ions bound to the C-terminal domain of CaM (EF-(2Ca-CaM)), and four calcium ions bound to CaM (EF-(4Ca-CaM)). Calculations were performed using AMBER package. The analysis of the MD simulations illustrates how CaM forces EF in an open conformation to form the adenylyl cyclase enzymatic site, especially with the two calcium form of CaM, best suited to fit the open conformation of EF. By contrast, CaM encounters bending and unwinding of its flexible interlinker in EF-(Apo-CaM) and EF-(4Ca-CaM). Calcium binding to one domain of CaM affects the other one, showing a transmission of information along the protein structure. The analysis of the CaM domains conformation along the simulations brings an atomistic and dynamic explanation for the instability of these complexes. Indeed the EF-hand helices of the N-terminal domain tend to open upon calcium binding (EF-(4Ca-CaM)), although the domain is locked by EF. By contrast, the C-terminal domain is strongly locked in the open conformation by EF, and the removal of calcium induces a collapse of EF catalytic site (EF-(Apo-CaM)).  相似文献   

17.
We have previously computed the structures of three loops, residues 591–596, 654–675 and 742–751, in the ras-p21 protein-binding domain (residues 568–1044) of the guanine nucleotide-exchange-promoting SOS protein that were crystallographically undefined when one molecule of ras-p21 (unbound to nucleotide) binds to SOS. Based on our computational results, we synthesized three peptides corresponding to sequences of each of these three loops and found that all three peptides strongly inhibit ras-p21 signaling. More recently, a new crystal structure of SOS has been determined in which this protein binds to two molecules of ras-p21, one unbound to GTP and one bound to GTP. In this structure, the 654–675 loop and residues 742–743 and 750–751 are now crystallographically defined. We have superimposed our energy-minimized structure of the ras-binding domain of SOS bound to one molecule of ras-p21 on the X-ray structure for SOS bound to two molecules of ras-p21. We find that, while the two structures are superimposable, there are large deviations of the residues 673 and 676 and 741 and 752, flanking the two loop segments. This suggests that the binding of the extra ras-p21 molecule, which is far from each of the three loops, induces conformational changes in these domains and further supports their role in signal transduction. In spite of these differences, we have superimposed our computed structures for the loop residues on those from the more recent X-ray structure. Our structure for the 654–675 segment is an anti-parallel beta-sheet with a reverse turn at residues 663–665; in the X-ray structure residues 655–662 adopt an alpha-helical conformation; on the other hand, our computed structure for residues 663–675 superimpose on the X-ray structure for these residues. We further find that our computed structures for residues 742–743 and 750–751 are superimposable on the X-ray structure for these residues.  相似文献   

18.
Hou J  Putkey JA  Hecht JT 《Cell calcium》2000,27(6):309-314
Cartilage oligomeric matrix protein (COMP/TSP5), a large glycoprotein found in the territorial matrix surrounding chondrocytes, is the fifth member of the thrombospondin (TSP) gene family. While the function of COMP is unknown, its importance is underscored by the finding that mutations in the highly conserved type 3 repeat domain causes two skeletal dysplasias. Pseudoachondroplasia (PSACH) and Multiple Epiphyseal Dysplasia, Fairbanks type (EDM1). The type 3 repeats are highly conserved low-affinity Ca(2+)binding domains that are found in all TSP genes. This study was undertaken to determine the effects of mutations on calcium binding and structure of the type 3 repeat domains. Wild-type (WT) and Delta469 recombinant COMP (rCOMP) proteins containing the entire calcium-binding domain were expressed in E. coli and purified. Equilibrium dialysis demonstrated that WT bound 10-12 Ca(2+)ions/molecule while Delta469 bound approximately half the Ca(2+)ions. Circular dichroism (CD) spectrometry had striking spectral changes for the WT in response to increasing concentrations of Ca(2+). These CD spectral changes were cooperative and reversible. In contrast, a large CD spectral change was not observed at any Ca(2+)concentration for Delta469. Moreover, both WT and Delta469 proteins produced similar CD spectral changes when titrated with Zn(2+), Cu(2+)and Ni(2+)indicating that the Delta469 mutation specifically affects only calcium binding. These results suggest that the Delta469 mutation, in the type 3 repeat region, interferes with Ca(2+)binding and that filling of all Ca(2+)binding loops may be critical for correct COMP protein conformation.  相似文献   

19.
Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain.  相似文献   

20.
Centrins are well-conserved calcium binding proteins from the EF-hand superfamily implicated in various cellular functions, such as centrosome duplication, DNA repair, and nuclear mRNA export. The intrinsic molecular flexibility and the self-association tendency make difficult the structural characterization of the integral protein. In this paper we report the solution structure, the Ca2+ binding properties, and the intermolecular interactions of the N-terminal domain of two human centrin isoforms, HsCen1 and HsCen2. In the absence of Ca2+, the N-terminal construct of HsCen2 revealed a compact core conformation including four almost antiparallel alpha-helices and a short antiparallel beta-sheet, very similar to the apo state structure of other calcium regulatory EF-hand domains. The first 25 residues show a highly irregular and dynamic structure. The three-dimensional model for the N-terminal domain of HsCen1, based on the high sequence conservation and NMR spectroscopic data, shows very close structural properties. Ca2+ titration of the apo-N-terminal domain of HsCen1 and HsCen2, monitored by NMR spectroscopy, revealed a very weak affinity (10(2)-10(3) M(-1)), suggesting that the cellular role of this domain is not calcium dependent. Isothermal calorimetric titrations showed that an 18-residue peptide, derived from the N-terminal unstructured fragment, has a significant affinity (approximately 10(5) M(-1)) for the isolated C-terminal domain, suggesting an active role in the self-assembly of centrin molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号