首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of expiratory loading on respiration in humans   总被引:1,自引:0,他引:1  
  相似文献   

2.
We examined the effects of expiratory resistive loads of 10 and 18 cmH2O.l-1.s in healthy subjects on ventilation and occlusion pressure responses to CO2, respiratory muscle electromyogram, pattern of breathing, and thoracoabdominal movements. In addition, we compared ventilation and occlusion pressure responses to CO2 breathing elicited by breathing through an inspiratory resistive load of 10 cmH2O.l-1.s to those produced by an expiratory load of similar magnitude. Both inspiratory and expiratory loads decreased ventilatory responses to CO2 and increased the tidal volume achieved at any given level of ventilation. Depression of ventilatory responses to Co2 was greater with the larger than with the smaller expiratory load, but the decrease was in proportion to the difference in the severity of the loads. Occlusion pressure responses were increased significantly by the inspiratory resistive load but not by the smaller expiratory load. However, occlusion pressure responses to CO2 were significantly larger with the greater expiratory load than control. Increase in occlusion pressure observed could not be explained by changes in functional residual capacity or chemical drive. The larger expiratory load also produced significant increases in electrical activity measured during both inspiration and expiration. These results suggest that sufficiently severe impediments to breathing, even when they are exclusively expiratory, can enhance inspiratory muscle activity in conscious humans.  相似文献   

3.
Slowly adapting pulmonary stretch receptors have been hypothesized to be the afferents mediating the vagally dependent, volume-related prolongation of expiratory time (TE) during expiratory loading. It has been further suggested that the vagal component of this prolongation of TE is due to the temporal summation of pulmonary stretch receptor (PSR) activity during expiratory loading. This hypothesis was tested in rabbits exposed to resistive and elastic single-breath expiratory loading while PSR's were simultaneously recorded. Both types of loads resulted in a decreased expired volume (VE) and increased expiratory duration (TE). The TE for resistive loads were significantly greater than for elastic loads for equivalent VE. Thus two different VE-TE relationships were found for resistive and elastic loads. When TE was plotted against the area under the expired volume trajectory, a single linear relationship was observed. PSR activity recorded during expiratory loading increased as VE decreased and TE increased. A single linear relationship resulted when the number of PSR spikes during the expiration was plotted against the associated TE for all types of loads. These findings demonstrate that the volume-related prolongation of TE with single-breath expiratory loads is associated with an increase in PSR discharge. These results support the hypothesis that the vagal component of load-dependent prolongation of TE is a function of both the temporal and spatial summation of PSR activity during the expiratory phase.  相似文献   

4.
Pulmonary function after exercise was evaluated in 22 asthmatic subjects before and after a 36-session training sequence of aerobic exercise. Training did not change pulmonary function values, except for a small increase in maximal voluntary ventilation (P less than 0.02), which was attributed to respiratory muscle training. After aerobic training, both external work at a given heart rate and peak O2 consumption increased by 30 and 15%, respectively. At the same minute ventilation (VE), immediate postexercise forced expiratory airflow was higher after training (P less than 0.02), and reduction in forced expiratory airflow during the first 9 min postexercise was less after training (P less than 0.01). The posttraining airflow response to the pretraining work load was, as expected, less than the pretraining response (P less than 0.02). Although the difference in maximal-to-minimal airflow at the same VE was similar before and after training, the airflow increase accounted for 50% of the response after training compared with 16% of the pretraining response. Furthermore the strong negative correlation (P less than 0.01) between maximal and minimal airflow both pre- and posttraining indicates that exercise-induced bronchospasm (EIB) severity is, in part, determined by the degree of exercise-induced bronchodilation. We conclude that aerobic training significantly increases exercise-induced bronchodilation and diminishes EIB.  相似文献   

5.
Expiratory resistive loading (ERL) is used by chronic obstructive pulmonary disease (COPD) patients to improve respiratory function. We, therefore, used a noninvasive tension-time index of the inspiratory muscles (TT(mus) = I/PI(max) x TI/TT, where I is mean inspiratory pressure estimated from the mouth occlusion pressure, PI(max) is maximal inspiratory pressure, TI is inspiratory time, and TT is total respiratory cycle time) to better define the effect of ERL on COPD patients. To accomplish this, we measured airway pressures, mouth occlusion pressure, respiratory cycle flow rates, and functional residual capacity (FRC) in 14 COPD patients and 10 normal subjects with and without the application of ERL. TT(mus) was then calculated and found to drop in both COPD and normal subjects (P<0.05). The decline in TT(mus) in both groups resulted solely from a prolongation of expiratory time with ERL (P<0.001 for COPD, P<0.05 for normal subjects). In contrast to the COPD patients, normal subjects had an elevation in I and FRC, thus minimizing the decline in TT(mus). In conclusion, ERL reduces the potential for inspiratory muscle fatigue in COPD by reducing TI/TT without affecting FRC and I.  相似文献   

6.
We investigated the effect of acute and sustained inspiratory resistive loading (IRL) on the activity of expiratory abdominal muscles (EMGab) and the diaphragm (EMGdi) and on ventilation during wakefulness and non-rapid-eye-movement (NREM) sleep in healthy subjects. EMGdi and EMGab were measured with esophageal and transcutaneous electrodes, respectively. During wakefulness, EMGdi increased in response to acute loading (18 cmH2O.l-1.s) (+23%); this was accompanied by preservation of tidal volume (VT) and minute ventilation (VE). During NREM sleep, no augmentation was noted in EMGdi or EMGab. Inspiratory time (TI) was prolonged (+5%), but this was not sufficient to prevent a decrease in both VT and VE (-21 and -20%, respectively). During sustained loading (12 cmH2O.l-1 s) in NREM sleep, control breaths (C) were compared with the steady-state loaded breaths (SS) defined by breaths 41-50. Steady-state IRL was associated with augmentation of EMGdi (12%) and EMGab (50%). VT returned to control levels, expiratory time shortened, and breathing frequency increased. The net result was the increase in VE above control levels (+5%, P less than 0.01). No change was noted in end-tidal CO2 or O2. We concluded that 1) wakefulness is a prerequisite for immediate load compensation (in its absence, TI prolongation is the only compensatory response) and 2) during sustained IRL, the augmentation of EMGdi and EMGab can lead to complete ventilatory recovery without measurable changes in chemical stimuli.  相似文献   

7.
8.
To examine the relationship between expiratory effort, expiratory flow, and glottic aperture, we compared the effects of actively and passively produced changes in flow in six normal subjects. During flow transients of 1.08 +/- 0.08 l/s produced by voluntary expiratory effort, glottic width (dg) increased by 54 +/- 13% (mean +/- SE). In contrast transient increases in expiratory flow, produced passively by chest compression, were not accompanied by increases in glottic dimensions. Similarly, when subjects expired through a resistance, transient passive increases in mouth pressure of 8.1 +/- 0.8 cmH2O failed to increase glottic width. However, when similar positive-pressure transients were produced actively, dg increased by 97 +/- 36% even though the expiratory efforts were accompanied by relatively small increases in flow (0.20 +/- 0.05 l/s). During tidal breathing glottic widening commenced 160 +/- 60 ms before the onset of inspiratory flow, whereas the widening associated with active flow and pressure transients did not measurably precede the onset of the change in flow or pressure. Our results indicate that transient expulsive efforts are associated with synchronous increases in dg, regardless of whether expiratory flow increases. The findings are most readily explained by a centrally determined synchronous recruitment of intrinsic laryngeal and expiratory muscles that facilitates lung emptying by minimizing airway resistance during forced exhalation.  相似文献   

9.
10.
High-intensity exercise (> or =90% of maximal O(2) uptake) sustained to the limit of tolerance elicits expiratory muscle fatigue (EMF). We asked whether prior EMF affects subsequent exercise tolerance. Eight male subjects (means +/- SD; maximal O(2) uptake = 53.5 +/- 5.2 ml.kg(-1).min(-1)) cycled at 90% of peak power output to the limit of tolerance with (EMF-EX) and without (CON-EX) prior induction of EMF and for a time equal to that achieved in EMF-EX but without prior induction of EMF (ISO-EX). To induce EMF, subjects breathed against an expiratory flow resistor until task failure (15 breaths/min, 0.7 expiratory duty cycle, 40% of maximal expiratory gastric pressure). Fatigue of abdominal and quadriceps muscles was assessed by measuring the reduction relative to prior baseline values in magnetically evoked gastric twitch pressure (Pga(tw)) and quadriceps twitch force (Q(tw)), respectively. The reduction in Pga(tw) was not different after resistive breathing vs. after CON-EX (-27 +/- 5 vs. -26 +/- 6%; P = 0.127). Exercise time was reduced by 33 +/- 10% in EMF-EX vs. CON-EX (6.85 +/- 2.88 vs. 9.90 +/- 2.94 min; P < 0.001). Exercise-induced abdominal and quadriceps muscle fatigue was greater after EMF-EX than after ISO-EX (-28 +/- 9 vs. -12 +/- 5% for Pga(tw), P = 0.001; -28 +/- 7 vs. -14 +/- 6% for Q(tw), P = 0.015). Perceptual ratings of dyspnea and leg discomfort (Borg CR10) were higher at 1 and 3 min and at end exercise during EMF-EX vs. during ISO-EX (P < 0.05). Percent changes in limb fatigue and leg discomfort (EMF-EX vs. ISO-EX) correlated significantly with the change in exercise time. We propose that EMF impaired subsequent exercise tolerance primarily through an increased severity of limb locomotor muscle fatigue and a heightened perception of leg discomfort.  相似文献   

11.
Effects of expiratory resistive loading on the sensation of dyspnea   总被引:1,自引:0,他引:1  
To determine whether an increase in expiratory motor output accentuates the sensation of dyspnea (difficulty in breathing), the following experiments were undertaken. Ten normal subjects, in a series of 2-min trials, breathed freely (level I) or maintained a target tidal volume equal to (level II) or twice the control (level III) at a breathing frequency of 15/min (similar to the control frequency) with an inspiratory load, an expiratory load, and without loads under hyperoxic normocapnia. In tests at levels II and III, end-expiratory lung volume was maintained at functional residual capacity. A linear resistance of 25 cmH2O.1(-1).s was used for both inspiratory and expiratory loading; peak mouth pressure (Pm) was measured, and the intensity of dyspnea (psi) was assessed with a visual analog scale. The sensation of dyspnea increased significantly with the magnitude of expiratory Pm during expiratory loading (level II: Pm = 9.4 +/- 1.5 (SE) cmH2O, psi = 1.26 +/- 0.35; level III: Pm = 20.3 +/- 2.8 cmH2O, psi = 2.22 +/- 0.48) and with inspiratory Pm during inspiratory loading (level II: Pm = 9.7 +/- 1.2 cmH2O, psi = 1.35 +/- 0.38; level III: Pm = 23.9 +/- 3.0 cmH2O, psi = 2.69 +/- 0.60). However, at each level of breathing, neither the intensity of dyspnea nor the magnitude of peak Pm during loading was different between inspiratory and expiratory loading. The augmentation of dyspnea during expiratory loading was not explained simply by increases in inspiratory activity. The results indicate that heightened expiratory as well as inspiratory motor output causes comparable increases in the sensation of difficulty in breathing.  相似文献   

12.
Using a respiratory inductive plethysmograph (Respitrace) we studied thoracoabdominal movements in eight normal subjects during inspiratory resistive (Res) and elastic (El) loading. The magnitude of loads was chosen so as to produce a fall in inspiratory mouth pressure of 20 cmH2O. The contribution of rib cage (RC) to tidal volume (VT) increased significantly from 68% during quiet breathing (QB) to 74% during El and 78% during Res. VT and breathing frequency did not change significantly. During loading a phase lag was present on inspiration so that the abdomen led the rib cage. However, outward movement of the abdomen ceased in the latter part of inspiration, and the RC became the sole contributor to VT. These observations suggest greater recruitment of the inspiratory musculature of the RC than the diaphragm during loading, although changes in the mechanical properties of the chest wall may also have contributed. Indeed, an increase in abdominal end-expiratory and end-inspiratory pressures was observed in five out of six subjects, indicating abdominal muscle recruitment which may account for part of the reduction in abdominal excursion. Both Res and El increased the rate of emptying of the respiratory system during the ensuing unloaded expiration as a result of a reduction in rib cage expiratory-braking mechanisms. The time course of abdominal displacements during expiration was unaffected by loading.  相似文献   

13.
14.
Activation of the vestibular otolith organs with head-down rotation (HDR) increases muscle sympathetic nerve activity (MSNA) in humans. Previously, we demonstrated this vestibulosympathetic reflex (VSR) elicits increases in MSNA during baroreflex unloading (i.e., lower body negative pressure) in humans. Whether such an effect persists during baroreflex loading is unknown. We tested the hypothesis that the ability of the VSR to increase MSNA is preserved during baroreflex unloading and inhibited during baroreflex loading. Ten subjects (26 +/- 1 yr) performed three trials of HDR to activate the VSR. These trials were performed after a period of sustained saline (control), nitroprusside (baroreflex unloading: 0.8-1.0 microg.kg(-1).min(-1)), and phenylephrine (baroreflex loading: 0.6-0.8 microg.kg(-1).min(-1)) infusion. Nitroprusside infusion decreased (Delta7 +/- 1 mmHg, where Delta is change; P < 0.001) and phenylephrine infusion increased mean arterial pressure (Delta8 +/- 1 mmHg; P < 0.001) at rest. HDR performed during the control [Delta3 +/- 2 bursts/min, Delta314 +/- 154 arbitrary units (au) total activity, Delta41 +/- 18% total activity; P < 0.05] and nitroprusside trials [Delta5 +/- 2 bursts/min, Delta713 +/- 241 au total activity, Delta49 +/- 20% total activity; P < 0.05] increased MSNA similarly despite significantly elevated levels at rest (13 +/- 2 to 26 +/- 3 bursts/min) in the latter. In contrast, HDR performed during the phenylephrine trial failed to increase MSNA (Delta0 +/- 1 bursts/min, Delta-15 +/- 33 au total activity, Delta-8 +/- 21% total activity). These results confirm previous findings that the ability of the VSR to increase MSNA is preserved during baroreflex unloading. In contrast, the ability of the VSR to increase MSNA is abolished during baroreflex loading. These results provide further support for the concept that the VSR may act primarily to defend against hypotension in humans.  相似文献   

15.
16.
17.
Increases in functional residual capacity (FRC) decrease inspiratory muscle efficiency; the present experiments were designed to determine the effect of FRC change on the ventilatory response to exercise. Six well-trained adults were exposed to expiratory threshold loads (ETL) ranging from 5 to 40 cmH2O during steady-state exercise on a bicycle ergometer at 40-95% VO2max. Inspiratory capacity (IC) was measured and changes of IC interpreted as changes of FRC. ETL did not consistently limit exercise performance. At heavy work (greater than 92% VO2max) minute ventilation decreased with increasing ETL; at moderate work (less than 58% VO2max) it did not. Decreases in ventilation were due to decreases in respiratory frequency with prolongation of the duration of expiration being the most consistent change in breathing pattern. At moderate work levels, FRC increased with ETL; at maximum work it did not. Changes in FRC were dictated by constancy of tidal volume and a fixed maximum end-inspiratory volume of 80-90% of the inspiratory capacity. When tidal volume was such that end-inspiratory volume was less than this value, FRC increased with ETL. Mouth pressure measured during the first 0-1 s of inspiratory effort against an occluded airway (P0-1) was increased by ETL equals 30 cmH2O, in spite of the fact that ventilation was decreased. We concluded that changes in FRC due to ETL had no effect on the ventilatory response to exercise and that changes in P0-1 induced by ETL did not reflect changes of inspiratory drive so much as changes of the pattern of inspiration.  相似文献   

18.
We measured the electromyographic activity of the posterior cricoarytenoid (PCA) muscle simultaneously with glottic width (dg) in five normal human subjects during hyperpnea induced by hypoxia (7% CO2 in N2) or hypercapnia (9% CO2 in 50% O2). The glottic aperture was measured during inspiration at the time corresponding to peak inspiratory PCA activity and during expiration at the time corresponding to the minimum tonic activity. During hyperpnea, peak and tonic PCA activity increased simultaneously with widening of the vocal cords in both phases of the respiratory cycle. The PCA activity during both inspiration and expiration showed a single curvilinear relationship with dg of the form dg = A - Be-k.PCA (where A, B, and k are constants) in three of the five subjects. At 50% of maximum PCA activity, dg already reached 95% of its maximum value, which was less than that recorded during a voluntary forced expiratory maneuver. The single curvilinear relationship between PCA activity and dg could be due to the length-tension relationship of the PCA muscle and/or changes in its mechanical coupling, as well as simultaneous agonist and antagonist laryngeal muscle activity during progressive chemical stimulation. Also, further widening of the glottis during forced expiration suggests recruitment of additional muscles, e.g., the arytenoideus.  相似文献   

19.
The purposes of this study were to estimate the heritabilities of several human dental arch dimensions and compare the hereditary differences among kinships and among variables. The sample consisted of 102 Japanese families, each including both parents and one of their offspring, and on average all subjects had relatively well-aligned permanent dentitions. The heritabilities of all variables were estimated from the regression of offspring on parent and on midparent. Results showed that genetics played a role regarding dental arch dimensions, and arch perimeter (sum of tooth width) was a more definite genetic-related factor than other arch dimensions, such as width, length, or size. There were few significant hereditary differences between sons and daughters, and between upper and lower arches for each variable. Sex chromosomal involvement was not confirmed, but maternal effects were found to be more evident in daughters than in sons, for both arches. Comparisons among the heritabilities of overall and of anterior arch dimensions indicated that size of the anterior part of the dental arch might be less resistant to environmental factors, especially in case of the lower arch.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号