首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fas/Fas ligand system triggers apoptosis in many cell types. Bcl‐XL overexpresion antagonizes Fas/Fas ligand‐mediated cell death. The mechanism by which Bcl-XL influences Fas‐mediated cell death is unclear. We have found that microtubule‐damaging drugs (e.g. Paclitaxel) induce apoptosis in a Fas/FasL‐dependent manner. Inhibition of Fas/FasL pathway by anti‐FasL antibody, mutant Fas or a dominant negative FADD blocks paclitaxel‐induced apoptosis. Paclitaxel induced apoptosis through activation of both caspase‐8 and caspase‐3. Overexpression of Bcl‐XL leads to inhibition of paclitaxel‐induced FasL expression and apoptosis. Bcl‐XL prevents the nuclear translocation of NFAT (nuclear factor of activated T lymphocytes) by inhibiting the activation of calcineurin, a calcium‐dependent phosphatase that must dephosphorylate NFAT for it to move to the nucleus. The loop domain in Bcl‐XL can suppress the anti‐apoptotic function of Bcl‐XL and may be a target for regulatory post‐translational modifications. Upon phosphorylation, Bcl‐XL loses its ability to bind with calcineurin. Without NFAT nuclear translocation, the FasL gene is not transcribed. Thus, paclitaxel and other drugs that disturb microtubule function kill cells, at least in part, through the induction of FasL, and Bcl‐XL‐mediated resistance to these agents is related to failure to induce FasL expression.  相似文献   

2.
3.
Phorbol myristate acetate (PMA) and ionomycin (Io) can induce T cell activation and proliferation. Furthermore, they stimulate activation-induced cell death (AICD) in mature lymphocytes via Fas/Fas ligand (FasL) up-regulation. In this study, we explored the influence of PMA/Io treatment on glioblastoma cells, and found that AICD-like phenomena may also occur in glioma. Using the MTT assay and cell counting, we demonstrated that treatment of PMA/Io significantly inhibited the proliferation of glioma cell lines, U87 and U251. TUNEL assays and transmission electron microscopy revealed that PMA/Io markedly induced U87 and U251 cell apoptosis. Propidium iodide staining and flow cytometry showed that treatment with PMA/Io resulted in an arrestment of cell cycle and an increase in cell death. Using real-time PCR and western blot, we found that PMA/Io up-regulated the expression of Fas and FasL at both mRNA and protein level, which confirmed that PMA/Io induced glioma cell death. Specific knockdown of NFAT1 expression by small hairpin RNA greatly reduced the PMA/Io induced cell death and apoptosis by inhibition of FasL expression. Microarray analysis showed that the expression of NFAT1 significantly correlated with the expression of Fas. The coexistence of Fas with NFAT1 in vivo provides the background for AICD-like phenomena to occur in glioma. These findings demonstrate that PMA/Io can induce glioblastoma cell death through the NFAT1-Fas/FasL pathway. Glioma-related AICD-like phenomena may provide a novel avenue for glioma treatment.  相似文献   

4.
5.
6.
Microcystin-LR (MC-LR) is the most frequent and most toxic microcystin identified. This natural toxin has multiple features, including inhibitor of protein phosphatases 1 and 2A, inducer of oxidative stress, as well as, tumor initiator and promoter. One unique character of MC-LR is this chemical can accumulate into liver after contacting and lead to severe damage to hepatocytes, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling system initiating apoptosis. In current study, we explored whether MC-LR could induce Fas and FasL expression in HepG2 cells, a well used in vitro model for the study of human hepatocytes. The data showed MC-LR induced Fas and FasL expression, at both mRNA and protein levels. We also found MC-LR induced apoptosis at the same incubation condition at which it induced Fas and FasL expression. The data also revealed MC-LR promoted nuclear translocation and activation of p65 subunit of NF-κB. By applying siRNA to knock down p65 in HepG2 cells, we successfully impaired the activation of NF-κB by MC-LR. In these p65 knockdown cells, we also observed significant reduction of MC-LR-induced Fas expression, FasL expression, and apoptosis. These findings demonstrate that the NF-κB mediates the induction of Fas and FasL as well as cellular apoptosis by MC-LR in HepG2 cells. The results bring important information for understanding how MC-LR induces apoptosis in hepatocytes.  相似文献   

7.
Apoptosis and anticancer drug resistance.   总被引:5,自引:0,他引:5  
Anticancer agents induce cancer cell death through apoptosis or necrosis. As anticancer agents at low and high concentrations cause apoptosis and necrosis, respectively, cancer cells may be merely injured by an anticancer agent in apoptosis, and cell death may result from an activation of the internal constituents to induce apoptosis. Therefore, an alternation of apoptotic pathway must change the efficacy of anticancer agents. As an escape of cancer cells from apoptosis seems to be closely associated with the development of anticancer resistance, this report focuses on mechanisms of apoptosis and its association with anticancer resistance. A Bax induces apoptosis mitochondria-dependently, whereas Fas can induce apoptosis mitochondria-independently. An interaction of Bax and Bcl-2 is very important to decide cell life or death, and Bcl-2 phosphorylation may control this interaction: Paclitaxel treatment induced Bcl-2 phosphorylation and typical apoptosis, whereas hyperthermia induced not Bcl-2 phosphorylation but nuclear translocation and failed to induce apoptosis. Moreover, Fas was localized in the cytoplasm of exponentially growing cells and on the cell membrane of confluent cells. We would like to emphasize that it is very important to check the localization of constituents of apoptosis in order to evaluate the susceptibility of cancer cells to apoptosis.  相似文献   

8.
9.
Lysophospholipids regulate a wide array of biological processes including apoptosis and neutrophil migration. Fas/Apo-1 and its ligand (FasL) participate in neuronal cell apoptosis causing various neurological diseases. Here, we use hippocampal neuroprogenitor cells to investigate how lysophosphatidylcholine (LPC) induces apoptosis in H19-7 hippocampal progenitor cells via Fas/Fas ligand-mediated apoptotic signaling pathway. Exposed cells with LPC presented on apoptotic morphology, positive TUNEL staining, and DNA fragmentation. We found that the expression of FasL was increased after LPC treatment. Furthermore, LPC-induced H19-7 cell apoptosis was decreased by agonistic anti-FasL antibody. In addition to promotion of caspase cascade activity by LPC, the administration of the caspase inhibitor, DEVD-fmk, prevented H19-7 cell apoptosis. LPC also increased the activation of nuclear factor-κB (NF-κB), which in turn, significantly increased FasL mRNA level. The increase in FasL mRNA level by NF-κB transfection was significantly decreased in the presence of IκB-SR, a super-repressor of IκB. Taken together, these results demonstrate that LPC has the ability to induce apoptosis in H19-7 cells through the upregulation of FasL expression via NF-κB activation.  相似文献   

10.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

11.
12.
13.
Soluble CD95 (Fas) ligand (sFasL) is known to be deficient in transducing signals upon engagement with membrane Fas. Here we report that sFasL tranduces, in synergy with non-cytotoxic anti-Fas monoclonal antibody (mAb), signals for apoptosis and nuclear translocation of the NF-kappaB (p65/p50) heterodimer. Activation of the specific signaling pathways correlates with target Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein expression. Synergy with anti-Fas mAb was demonstrated with a trimeric unit of sFasL bearing a single binding site for Fas trimer. In contrast, membrane-bound FasL as expressed on cell-derived vesicles was fully competent in transducing Fas-mediated signals for apoptosis and NF-kappaB nuclear translocation. We propose a model in which the trimeric sFasL signaling requires target expression of a high focal density of Fas, which is induced by the signaling-incompetent anti-Fas mAb. Membrane-bound FasL induces powerful Fas-mediated signals because it possesses both Fas-focusing and signal-transducing functions.  相似文献   

14.
15.
16.
Liao CF  Luo SF  Shen TY  Lin CH  Chien JT  Du SY  Jiang MC 《BMB reports》2008,41(3):210-216
CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.  相似文献   

17.
18.
Alveolar epithelial apoptosis is an important feature of hyperoxia-induced lung injury in vivo and has been described in the early stages of bronchopulmonary dysplasia (chronic lung disease of preterm newborn). Molecular regulation of hyperoxia-induced alveolar epithelial cell death remains incompletely understood. In view of functional involvement of Fas/FasL system in physiological postcanalicular type II cell apoptosis, we speculated this system may also be a critical regulator of hyperoxia-induced apoptosis. The aim of this study was to investigate the effects of hyperoxia on apoptosis and apoptotic gene expression in alveolar epithelial cells. Apoptosis was studied by TUNEL, electron microscopy, DNA size analysis, and caspase assays. Fas/FasL expression was determined by Western blot analysis and RPA. We determined that in MLE-12 cells exposed to hyperoxia, caspase-mediated apoptosis was the first morphologically and biochemically recognizable mode of cell death, followed by necrosis of residual adherent cells. The apoptotic stage was associated with a threefold upregulation of Fas mRNA and protein expression and increased susceptibility to direct Fas receptor activation, concomitant with a threefold increase of FasL protein levels. Fas gene silencing by siRNAs significantly reduced hyperoxia-induced apoptosis. In murine fetal type II cells, hyperoxia similarly induced markedly increased Fas/FasL protein expression, confirming validity of results obtained in transformed MLE-12 cells. Our findings implicate the Fas/FasL system as an important regulator of hyperoxia-induced type II cell apoptosis. Elucidation of regulation of hyperoxia-induced lung apoptosis may lead to alternative therapeutic strategies for perinatal or adult pulmonary diseases characterized by dysregulated type II cell apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号