首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that the GABAergic and noradrenergic systems play an important role in blood pressure and heart rate regulation. Benzodiazepines and beta-carbolines, respectively, increase or decrease the probability of chloride-channel opening induced by GABA. The aim of this study was to determine, in conscious rats, the interaction existing between the central alpha2-adrenoceptor stimulation induced by clonidine and the facilitation or impairment of benzodiazepine receptor activity through the administration of either diazepam, a benzodiazepine receptor agonist, or methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), an inverse benzodiazepine agonist. Clonidine (5-10 microg, intracerebroventricularly) reduced heart rate and increased mean blood pressure by activation of central alpha2-adrenoceptors. Diazepam (2 mg/kg, intravenously (i.v.)) induced an increase in heart rate, while DMCM (0.3 mg/kg, i.v.) elicited a bradycardic effect. The bradycardic effects induced by both clonidine and DMCM were antagonized by the prior administration of methylatropine (1.5 mg/kg, i.v.). DMCM (0.3 mg/kg, i.v.) prevented the clonidine effects on heart rate and mean blood pressure, while diazepam (2 mg/kg, i.v.) failed to modify these effects. Our results suggest that the bradycardic effects of clonidine are mediated by a vagal stimulation and are related to the activation of a GABAergic pathway.  相似文献   

2.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

3.
Yu Y  Wang CL  Cui Y  Fan YZ  Liu J  Shao X  Liu HM  Wang R 《Peptides》2006,27(1):136-143
Endomorphin1-ol (Tyr-Pro-Trp-Phe-ol, EM1-ol) and endomorphin2-ol (Tyr-Pro-Phe-Phe-ol, EM2-ol), with C-terminal alcohol (-ol) containing, have been shown to exhibit higher affinity and lower intrinsic efficacy in vitro than endomorphins. In the present study, in order to investigate the alterations of systemic hemodynamic effects induced by C-terminal amide to alcohol conversion, responses to intravenous (i.v.) or intracerebroventricular (i.c.v.) injection of EM1-ol, EM2-ol and their parents were compared in the system arterial pressure (SAP) and heart rate (HR) of anesthetized rats. Both EM1-ol and EM2-ol induced dose-related decrease in SAP and HR when injected in doses of 3-100 nmol/kg, i.v. In terms of relative vasodepressor activity, it is interesting to note that EM2-ol was more potent than endomorphin2 [the dose of 25% decrease in SAP (DD25) = 6.01+/-3.19 and 13.99+/-1.56 nmol/kg, i.v., respectively] at a time when responses to EM1-ol were less potent than endomorphin1. Moreover, decreases in SAP in response to EM1-ol and EM2-ol were reduced by naloxone, atropine sulfate, L-NAME and bilateral vagotomy. It indicated that the vasodepressor responses were possibly mediated by a naloxone-sensitive, nitric oxide release, vagus-activated mechanism. It is noteworthy that i.c.v. injections of -ol derivatives produced dose-related decreases in SAP and HR, which were significantly less potent than endomorphins and were attenuated by naloxone and atropine sulfate. In summary, the results of the present study indicated that the C-terminal amide to alcohol conversion produced different effects on the vasodepressor activity of endomorphin1 and endomorphin2 and endowed EM2-ol distinctive hypotension characters in peripheral (i.v.) and central (i.c.v.) tissues. Moreover, these results provided indirect evidence that amidated C-terminus might play an important role in the regulation of the cardiovascular system.  相似文献   

4.
The cardiovascular effects of i.v. treatment with 1,8-cineole, a monoterpenic oxide present in many plant essential oils, were investigated in normotensive rats. This study examined (i) whether the autonomic nervous system is involved in the mediation of 1,8-cineole-induced changes in mean aortic pressure (MAP) and heart rate (HR) and (ii) whether the hypotensive effects of 1,8-cineole could result from its vasodilatory effects directly upon vascular smooth muscle. In both pentobarbital-anesthetized and conscious, freely moving rats, bolus injections of 1,8-cineole (0.3-10 mg/kg, i.v.) elicited similar and dose-dependent decreases in MAP. Concomitantly, 1,8-cineole significantly decreased HR only at the highest dose (10 mg/kg). Pretreatment of anesthetized rats with bilateral vagotomy significantly reduced the bradycardic responses to 1,8-cineole (10 mg/kg) without affecting hypotension. In conscious rats, i.v. pretreatment with methylatropine (1 mg/kg), atenolol (1.5 mg/kg), or hexamethonium (30 mg/kg) had no significant effects on the 1,8-cineole-induced hypotension, while bradycardic responses to 1,8-cineole (10 mg/kg) were significantly reduced by methylatropine. In rat isolated thoracic aorta preparations, 1,8-cineole (0.006-2.6 mM) induced a concentration-dependent reduction of the contraction induced by potassium (60 mM). This is the first physiological evidence that i.v. treatment with 1,8-cineole in either anesthetized or conscious rats elicits hypotension; this effect seems related to an active vascular relaxation rather than withdrawal of sympathetic tone.  相似文献   

5.
M Vallejo  S L Lightman 《Life sciences》1986,38(20):1859-1866
The haemodynamic effects of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) in urethane-anaesthetized rats were studied. In Sprague-Dawley rats, NPY increased both blood pressure and heart rate in a dose-dependent manner. This response was unaffected by removal of the adrenal medullae or pretreatment with a specific vasopressin antagonist (180 ng/kg i.v.), but was abolished by phenoxybenzamine (1mg/kg i.v.). After pretreatment with propranolol (1mg/kg i.v.), the tachycardia was inhibited and the pressor response was of shorter duration than in controls. In 6-hydroxydopamine treated rats (two doses of 250 micrograms i.c.v., three days apart), NPY still elicited a pressor response and tachycardia, which were significantly higher than controls 15 minutes after the injection. Plasma levels of vasopressin were not altered by i.c.v. administration of NPY. However, in Brattleboro rats the peptide had no haemodynamic effects. Our results suggest that activation of sympathetic nervous system but not release of vasopressin or adrenal catecholamines into the bloodstream mediates the cardiovascular response to NPY. Central vasopressin pathways however may be involved.  相似文献   

6.
We aimed to investigate the effects of intracerebroventricularly (i.c.v.) injected glucagon-like peptide-1 (GLP-1) on blood pressure and heart rate, and whether central cholinergic system and vasopressinergic system play roles in these effects. Male Wistar albino rats were used throughout the experiments. Blood pressures and heart rates were observed before and for 30 min following drug injections. i.c.v. GLP-1 (100, 500 and 1000 ng/10 microl) caused a dose-dependent increase in both blood pressure and heart rate. Nicotinic receptor antagonist mecamylamine (25 microg/10 microl, i.c.v.) and muscarinic receptor antagonist atropine (5 microg/10 microl, i.c.v.) prevented the stimulating effect of GLP-1 on blood pressure. The effect of GLP-1 on heart rate was blocked only by mecamylamine. The V1 receptor antagonist of vasopressin (B-mercapto B, B-cyclopentamethylenepropionyl, O-Me-Tyr,Arg)-vasopressin (10 microg/kg), that was applied intraarterially, only prevented the effect of GLP-1 on blood pressure, but did not show any effect on heart rate. Our data indicate that i.c.v. GLP-1 increases blood pressure and heart rate, and stimulation of central nicotinic and partially muscarinic receptors and vasopressinergic system play a role in the effects of i.c.v. GLP-1 on blood pressure. The effect of GLP-1 on heart rate may be partially due to stimulation of central nicotinic receptors.  相似文献   

7.
八肽胆囊收缩素对大鼠心功能的影响及受体机制   总被引:4,自引:0,他引:4  
Zhao XY  Ling YL  Meng AH  Shan BE  Zhang JL 《生理学报》2002,54(3):239-243
为探讨八肽胆囊收缩素 (CCK 8)对麻醉大鼠心功能的影响及受体机制 ,实验监测了左心室收缩压(LVP)、左心室收缩与舒张期内压变化的最大速率 (±LVdp/dtmax)、心率 (HR)和平均动脉压 (MAP)。结果如下 :小剂量CCK 8(0 4 μg/kg)可引起心动过速 ,MAP、LVP和±LVdp/dtmax轻度上升 ;中剂量CCK 8(4 μg/kg)和大剂量CCK 8(4 0 μg/kg)可引起心动过缓 ,MAP、LVP和±LVdp/dtmax显著增加 ;应用CCK 受体 (CCK R)拮抗剂丙谷胺 (1 0mg/kg)抑制以上变化 ;由逆转录 聚合酶链反应 (RT PCR)检测到心肌组织有CCK A受体 (CCK AR)和CCK B受体 (CCK BR)mRNA表达。以上结果提示 :CCK 8可激活心肌组织的CCK R ,引起剂量依赖性的心功能增加和心率改变。  相似文献   

8.
Previous studies suggest that cannabinoids system plays an important role in cardiovascular regulation. (m)VD-hemopressin(α) (VD-Hpα), an 11-residue peptide originating from the α1 chain of hemoglobin, was recently reported as a selective agonist of cannabinoid CB1 receptor. The present study was undertaken to investigate the intrathecal (i.t.) action of (m)VD-Hpα on blood pressure in urethane-anesthetized rats. Our results demonstrated that injections of (m)VD-Hpα (5–30 nmol, i.t.) produced a dose-dependent decrease in mean arterial pressure (MAP), similar to that of the non-peptidic cannabinoid receptor agonist WIN55212-2 (1.25–10 nmol, i.t.). The hypotensive effect of (m)VD-Hpα was not influenced by the CB1 receptor antagonist AM251 (20 nmol, i.t.) or the CB2 receptor antagonist AM630 (20 nmol, i.t.). However, WIN55212-2-induced hypotension was almost completely prevented by i.t. administration of AM251, not by AM630. The spinal hypotension of (m)VD-Hpα and WIN55212-2 was significantly reduced by pretreatment with the α-adrenoceptor antagonist phentolamine (1 mg/kg, i.v.), but not by the β-adrenoceptor antagonist propranolol (2 mg/kg, i.v.) or the muscarinic receptor antagonist atropine (2 mg/kg, i.v.). In addition, l-NAME (50 mg/kg, i.v.), the inhibitor of nitric oxide (NO) synthase, significantly reduced WIN55212-2-induced hypotension, but had no effect on the hypotensive response to (m)VD-Hpα. Collectively, the results show that i.t. administration of (m)VD-Hpα induces a decrease in MAP via a non-CB1 and non-CB2 mechanism.  相似文献   

9.
The administration of delta-9-tetrahydrocannabinol (delta 9-THC, 0.078-5.0 mg/kg, i.v.) to rats anesthetized with pentobarbital caused as much as a 50% decrease in mean arterial blood pressure, heart rate and respiratory rate in a dose-dependent manner. Delta-9(11)-tetrahydrocannabinol (delta 9(11)-THC) was approximately 8-fold less potent than delta 9-THC in its hypotensive effect and had smaller effects on heart and respiratory rates that were not dose-related at doses below 5 mg/kg. Alternate injections of epinephrine (2 micrograms/kg) with vehicle and increasing cannabinoid doses (1.25-5.0 mg/kg) indicated a potentiation of both the duration of the pressor effect and the magnitude of the reflex bradycardic effect of epinephrine by both delta 9- and delta 9(11)-THC. Epinephrine also produced arrhythmias in rats receiving cannabinoids, but not in rats receiving alternate injections of vehicle. It is concluded that both cannabinoids have adverse effects on the cardiovascular system and adverse interactions with epinephrine in rats anesthetized with pentobarbital.  相似文献   

10.
Acetylcholine potently stimulates the hypothalamic-pituitary-adrenal (HPA) axis. Cholinergic receptor agonist carbachol, given intraperitoneally (i.p.) or into the lateral cerebral ventricle (i.c.v.) to non-anesthetized rats acts via multiple pathways to stimulate the HPA axis. The present study sought to determine 1) the functional selectivity of carbachol for cholinergic muscarinic and/or nicotinic receptors involved in the stimulation of HPA axis; 2) the involvement of prostaglandins (PGs) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the carbachol-induced ACTH and corticosterone secretion in non-stressed rats and animals exposed to social crowding stress for 7 days (24 per a cage for 6). Carbachol was given i.c.v. or i.p. and cholinergic receptor antagonists or cyclooxygenase isoenzyme antagonists were given by the same routes 15 min earlier. One hour after the last injection trunk blood was taken for ACTH and corticosterone determinations. Atropine (0.1 microg i.c.v.), a cholinergic receptor antagonist, totally abolished the carbachol (2 microg i.c.v.)-induced ACTH and corticosterone secretion and mecamylamine (20 microg i.c.v.), a selective nicotinic receptor antagonist, did not affect this secretion. This finding indicates that carbachol functions as a selective central cholinergic muscarinic receptor agonist for the HPA axis stimulation. Crowding stress significantly diminished the carbachol (0.2 mg/kg i.p.)-induced plasma ACTH and corticosterone levels measured 1 hr after administration. Pretreatment with indomethacin (2 mg/kg i.p.), a non-selective cyclooxygenase inhibitor, significantly diminished the ACTH and corticosterone responses to carbachol (0.2 mg/kg i.p.) in control rats and moderately decreased these responses in stressed rats. Piroxicam (0.2 and 2.0 mg/kg i.p.), a COX-1 inhibitor, considerably impaired the carbachol-induced ACTH and corticosterone responses in control rats and markedly diminished these responses in stressed rats. A selective COX-2 blocker, compound NS-398 (0.2 and 2.0 mg/kg i.p.), substantially decreased the carbachol-induced hormones secretion in control rats but did not markedly alter this secretion in stressed rats. These results indicate that in the carbachol-induced HPA axis activation PGs generated by COX-1 are considerably and to a much greater extent involved than PGs generated by COX-2. Social stress markedly diminishes the mediation of PGs generated by COX-1 but PGs synthesized by COX-2 do not substantially participate in the carbachol-induced HPA response.  相似文献   

11.
McLeod RL  Mingo GG  Kreutner W  Hey JA 《Life sciences》2005,76(16):1787-1794
The pharmacological consequences of combining a histamine H1 receptor antagonist with a H3 antagonist on cutaneous microvascular permeability due to intradermal (i.d.) injections of compound 48/80, a mast cell liberator of histamine, was studied in the anesthetized guinea pig. Compound 48/80 (0.0003, 0.001, 0.003 and 0.01%) induced permeability responses were attenuated, as determined by Evans blue extravasation, in animals pretreated with the H1 antagonist, chlorpheniramine (CTM; 1.0 mg/kg, i.v.) by 17 +/- 4, 31 +/- 4, 32 +/- 4 and 37 +/- 4%, respectively. Combination treatment with an H1 and H3 antagonist displayed greater inhibitory efficacy against the effects elicited by compound 48/80. Specifically, combined treatment with CTM (1.0 mg/kg, i.v.) and the H3 antagonist, thioperamide (THIO 1.0 mg/kg,i.v.) inhibited the skin responses of i.d. compound 48/80 (0.0003, 0.001, 0.003 and 0.01%) by 36 +/- 4, 45 +/- 4, 49 +/- 4 and 54 +/- 4%. A second H3 antagonist, clobenpropit (CLOB; 0.3 mg/kg, i.v.) plus CTM (1.0 mg/kg, i.v.) also inhibited Evans blue extravasation. Treatment with THIO (1.0 mg/kg, i.v.) and CLOB (0.3 mg/kg, i.v.) administered alone had no effect on compound 48/80-induced skin responses. We conclude that combination administration of a H1 and a H3 histamine receptor antagonist produces greater inhibitory effect on cutaneous microvascular permeability produced by released mast cell-derived histamine than either a H1 or H3 antagonist administered separately. In addition, the antiallergy activity of combining a H3 antihistamine with a H3 antagonist activity might provide a novel approach for the treatment of allergic skin diseases such as urticaria.  相似文献   

12.
L L Murphy  B A Adrian  M Kohli 《Steroids》1999,64(9):664-671
Acute treatment with delta9-tetrahydrocannabinol [delta9-THC; 0.5 or 1.0 mg/kg b.w. intravenously (i.v.)], the major psychoactive constituent of marijuana, produces a dose-related suppression of pulsatile luteinizing hormone (LH) secretion in ovariectomized rats. To determine whether delta9-THC produces this response by altering neurotransmitter and/or neuropeptide systems involved in the regulation of LH secretion, ovariectomized rats were pretreated with antagonists for dopamine, norepinephrine, serotonin, or opioid receptors, and the effect of delta9-THC on LH release was determined. Pretreatment with the D2 receptor antagonists butaclamol (1.0 mg/kg b.w., intraperitoneally) or pimozide [0.63 mg/kg, subcutaneously (s.c.)], the opioid receptor antagonists naloxone (1-4 mg/kg, i.v.) or naltrexone (2 mg/kg, i.v.), the noradrenergic alpha2-receptor antagonist idazoxan (10 microg/kg, i.v.), or the serotonin 5-HT(1C/2) receptor antagonist ritanserin (1 or 5 mg/kg b.w., i.p.), did not alter delta9-THC-induced inhibition of pulsatile LH secretion. Pretreatment with a relatively high dose of the beta-adrenergic receptor blocker propranolol (6 mg/kg, i.v.) attenuated the ability of the low THC dose to inhibit LH release; however, lower doses of propranolol were without effect. Furthermore, the ability of a relatively nonspecific serotonin 5-HT(1A/1B) receptor antagonist pindolol (4 mg/kg, s.c.) or the specific 5-HT1A receptor antagonist WAY-100635 (1 mg/kg, s.c.) to significantly attenuate THC-induced LH suppression indicates that activation of serotonergic 5-HT1A receptors may be an important mode by which THC causes inhibition of LH release in the ovariectomized rat.  相似文献   

13.
We previously reported the stimulatory effect of endogenous nitric oxide (NO) on gastric acid secretion in the isolated mouse whole stomach and histamine release from gastric histamine-containing cells. In the present study, we investigated the effects of endogenous and exogenous NO on gastric acid secretion in urethane-anesthetized rats. Acid secretion was studied in gastric-cannulated rats stimulated with several secretagogues under urethane anesthesia. The acid secretory response to the muscarinic receptor agonist bethanechol (2 mg/kg, s.c.), the cholecystokinin(2) receptor agonist pentagastrin (20 microg/kg, s.c.) or the centrally acting secretagogue 2-deoxy-D-glucose (200 mg/kg, i.v.) was dose-dependently inhibited by the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA, 10 or 50 mg/kg, i.v.). This inhibitory effect of L-NNA was reversed by a substrate of NO synthase, L-arginine (200 mg/kg, i.v.), but not by D-arginine. The histamine H(2) receptor antagonist famotidine (1 mg/kg, i.v.) completely inhibited the acid secretory response to bethanechol, pentagastrin or 2-deoxy-D-glucose, showing that all of these secretagogues induced gastric acid secretion mainly through histamine release from gastric enterochromaffin-like cells (ECL cells). On the other hand, histamine (10 mg/kg, s.c.)-induced gastric acid secretion was not inhibited by pretreatment with L-NNA. The NO donor sodium nitroprusside (0.3-3 mg/kg, i.v.) also dose-dependently induced an increase in acid secretion. The sodium nitroprusside-induced gastric acid secretion was significantly inhibited by famotidine or by the soluble guanylate cyclase inhibitor methylene blue (50 mg/kg, i.v.). These results suggest that NO is involved in the gastric acid secretion mediated by histamine release from gastric ECL cells.  相似文献   

14.
Allium sativum (garlic) is reported to act as an antihypertensive amidst an inconsistency of evidence. In this study, we investigated the cardiovascular effects of aqueous garlic extracts (AGE) on normotensive and hypertensive rats using the two-kidney one-clip (2K1C) model. Mean arterial blood pressure (MAP) and heart rate (HR) were measured in normotensive and 2K1C rat models anesthetized with thiopentone sodium (50 mg/kg body weight i.p.) through the left common carotid artery connected to a recording apparatus. The jugular vein was cannulated for administration of drugs. Intravenous injection of AGE (5-20 mg/kg) caused a significant decrease in both MAP and HR in a dose-dependent manner in both the normotensive and 2K1C models, with more effects on normotensive than 2K1C rat model. The dose of 20mg/kg of AGE significantly reduced systolic (16.7 ± 2.0%), diastolic (26.7 ± 5.2%), MAP (23.1 ± 3.6%) and HR (38.4 ± 4.3%) in normotensive rats. In 2K1C group, it significantly reduced systolic (22.2 ± 2.1 %), diastolic (30.6 ± 3.2%), MAP (28.2 ± 3.1%) and HR (45.2 ± 3.5%) from basal levels. Pulse pressure was significantly elevated (33.3 ±5.1%) in the 2K1C group. Pretreatment of the animals with muscarinic receptor antagonist, atropine (2 mg/kg, i.v.), did not affect the hypotensive and the negative chronotropic activities of the extract. AGE caused a decrease in blood pressure and bradycardia by direct mechanism not involving the cholinergic pathway in both normotensive and 2K1C rats, suggesting a likely involvement of peripheral mechanism for hypotension.  相似文献   

15.
Buyukcoskun NI  Gulec G  Ozluk K 《Peptides》2001,22(9):1415-1420
Participation of central cholinergic system in the effects of intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) on blood pressure and heart rate was studied in conscious, freely moving rats. Ang II dose-dependently increased blood pressure and decreased heart rate. Both atropine and mecamylamine (i.c.v.) pretreatments prevented the cardiovascular effects of Ang II. Pretreatment with a vasopressin V1 antagonist also prevented the cardiovascular responses to Ang II. Our data suggest that the central pressor effect of Ang II is mediated in part by central acetylcholine via both muscarinic and nicotinic receptors, and vasopressin participates in this effect through V1 receptors.  相似文献   

16.
Britton KT  Southerland S 《Peptides》2001,22(4):607-612
Intracerebroventricular injection of neuropeptide Y (NPY) produces potent 'anxiolytic' effects in animal models of anxiety. Administration of opioid receptor antagonists suppresses NPY-induced food intake and thermogenesis. The present study examined whether the opiate antagonist naloxone would also suppress the 'anxiolytic' effects of neuropeptide Y. Following training and stabilization of responding in an operant conflict model of anxiety, rats were injected with either NPY or diazepam. Both NPY (veh., 2, 4, 6 microg, i.c.v.) and chlordiazepoxide (veh., 2, 4, 6 mg/kg, i.p.) produced a dose-dependent increase in punished responding in the conflict test. The 'anxiolytic' effects of NPY were not blocked by the administration of flumazenil (3, 6, 12 mg/kg, i.p.). The administration of naloxone (0.25-2.0 mg/kg, s.c.) antagonized the effects of NPY. Central administration of the selective mu opiate antagonist CTAP (1 microg, i.c.v.) partially blocked NPY-induced conflict responding. These results support the hypothesis that NPY may play an important role in experimental anxiety independent of the benzodiazepine receptor and further implicate the opioid system in the behavioral expression of anxiety.  相似文献   

17.
The aim of the current study was to determine the central cyclooxygenase (COX) pathway and central thromboxane signaling in the cardiovascular effects evoked by arachidonic acid (AA). As a main control for the study, different doses of AA (75, 150, or 300?μg) were administered intracerebroventricularly (i.c.v.). Centrally injected AA dose- and time-dependently increased mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. The maximal cardiovascular effects of AA were observed at min 10 of the injection and lasted almost 30?min. To investigate the central mechanism of the AA-induced cardiovascular effect in conscious normotensive animals, pretreatment with nonselective COX inhibitor indomethacin (200?μg; i.c.v.), thromboxane A2 (TXA2) synthesis inhibitor furegrelate (250 or 500?μg; i.c.v.), or TXA2 receptor antagonist SQ-29548 (8 or 16?μg; i.c.v.) was carried out 15?min before AA (150?μg; i.c.v.) injection. While indomethacin completely prevented the pressor and bradycardic responses to AA, furegrelate and SQ-29548 attenuated these effects in part in awake normotensive rats. In conclusion, these findings suggest that the pressor and bradycardic cardiovascular effects of centrally injected AA are dependent on COX activity being totally central and the TXA2 signaling pathway being subsequently central, at least in part.  相似文献   

18.
We have previously shown that activation of P2X purinoceptors in the subpostremal nucleus tractus solitarius (NTS) produces a rapid bradycardia and hypotension. This bradycardia could occur via sympathetic withdrawal, parasympathetic activation, or a combination of both mechanisms. Thus we investigated the relative roles of parasympathetic activation and sympathetic withdrawal in mediating this bradycardia in chloralose-urethane anesthetized male Sprague-Dawley rats. Microinjections of the selective P2X purinoceptor agonist alpha,beta-methylene ATP (25 pmol/50 nl and 100 pmol/50 nl) were made into the subpostremal NTS in control animals, after atenolol (2 mg/kg i.v.), a beta1-selective antagonist, and after atropine methyl bromide (2 mg/kg i.v.), a muscarinic receptor antagonist. The bradycardia observed with activation of P2X receptors at the low dose of the agonist is mediated almost entirely by sympathetic withdrawal. After beta1-adrenergic blockade, the bradycardia was reduced to just -5.1 +/- 0.5 versus -28.8 +/- 5.1 beats/min in intact animals. Muscarinic blockade did not produce any significant change in the bradycardic response at the low dose. At the high dose, both beta1-adrenergic blockade and muscarinic blockade attenuated the bradycardia similarly, -37.4 +/- 6.4 and -40.6 +/- 3.7 beats/min, respectively, compared with -88.0 +/- 11 beats/min in control animals. Double blockade of both beta1-adrenergic and muscarinic receptors virtually abolished the response (-2.5 +/- 0.8 beats/min). We conclude that the relative contributions of parasympathetic activation and sympathetic withdrawal are dependent on the extent of P2X receptor activation.  相似文献   

19.
Duan GC  Ling YL  Gu ZY  Wei P  Niu ZY  Yang SF 《生理学报》2003,55(2):201-205
为探讨八肽胆囊收缩素(CCK-8)缓解内毒素休克(ES)时肺动脉血压(PAP)增高的机制,观察了CCK-8对脂多糖(LPS)引起家兔ES时PAP变化以及离体肺动脉环(PARs)张力改变的影响。实验用新西兰大耳白雄性家兔40只,分为颈静脉注入LPS(8mg/kg i.v.)复制的家兔ES模型、LPS注入前15min给CCK-8(15μg/kg,i.v.)、LPS注入前15min给CCK受体拮抗剂丙谷胺(Pro 1mg/kg,i.v.)、单独注入CCK-8(15μg/kg,i.v.)和注射生理盐水(对照)共5组。用生理记录仪监测平均动脉压(MAP)和PAP的变化;5h后制备PARs,应用血管张力测定技术,检测各组PARs张力。结果为:(1)ES时MAP降低、PAP升高,CCK-8可完全翻转ES时PAP的增高,而Pro加剧ES时PAP的增高;(2)LPS组的PARs对苯肾上腺素(PE)的收缩反应增强,对ACh内皮依赖性舒张反应降低,而CCK-8可逆转LP5的上述作用。上述结果提示CCK—8可缓解ES时的PAP升高,这可能与其调节肺动脉张力改变有关。  相似文献   

20.
The effects of central and peripheral administration of muscarinic agonists and antagonists on small intestinal motility were examined in conscious rats chronically fitted with electrodes implanted in the duodeno-jejunal wall and a cannula in a cerebral lateral ventricle. Intracerebroventricular (i.c.v.) administration of either atropine or pirenzepine at doses from 1 to 10 micrograms, 15 min before a 3 and 6 g lab chow meal significantly reduced the duration of the postprandial disruption of the migrating myoelectric complexes (MMC). The reduction was significantly greater for atropine, a mixed M1 and M2 muscarinic receptor antagonist, than for pirenzepine, an antagonist with a high affinity for M1 receptors. At a higher dose (10 micrograms) intra peritoneal (i.p.) administration of atropine or pirenzepine did not modify the postprandial disruption of MMC. Oxotremorine (10 ng) a M2 agonist, but not McNeil A343 (5 micrograms), a selective M1 agonist, given i.c.v. in fasted rats disrupted for 1.5 h the MMC pattern. At the same doses given i.p. oxotremorine and McNeil A343 disrupted the MMC for 15 and 45 min respectively. We conclude that the postprandial changes in the small intestinal motility involve muscarinic receptors, mainly of M2 subtype, at the level of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号