首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial ubiquinol--cytochrome c reductase complex (complex III or cytochrome bc1 complex) is thought to consist of eight subunits, seven of which are specified by nuclear genes and synthesized in the cytoplasm. We have studied the synthesis of five of the nuclear-encoded subunits both in vivo and in vitro and show that of these the 44-kDa, 40-kDa and 17-kDa subunits are synthesized with cleavable extensions, while the 14-kDa and 11-kDa proteins are synthesized without detectable extra sequences. The sizes of the pre-sequences, as determined by the relative mobility of the precursor proteins in sodium dodecyl sulphate/polyacrylamide gels, range from 0.5-kDa for the 44-kDa and 40-kDa subunits to 9-kDa for the 17-kDa subunit. The existence in vivo of precursor forms to the 44-kDa, 40-kDa and 17-kDa subunits implies that import is at least partially a post-translational process. The precursor of the 44-kDa subunit can be processed post-translationally in vitro by isolated mitochondria. The messenger RNAs for subunits of the complex have been studied. Those coding for the 44-kDa, 40-kDa, 14-kDa and 11-kDa proteins and cytochrome c1 are of different sizes, indicating that each of these subunits is synthesized as a separate protein, rather than as part of a polyprotein precursor.  相似文献   

2.
We previously identified the 26/29-kDa proteinase in the hemocytes of Sarcophaga peregrina (flesh fly) that appears to participate in elimination of foreign proteins in this insect [Eur. J. Biochem. 209, 939-944 (1992)]. Here, we report the cDNA cloning of this proteinase. The cDNA encodes a protein which includes both the 26- and 29-kDa subunit, strongly suggesting that the both subunits are derived from a single precursor protein. The 26- and 29-kDa subunit located at the amino-terminal and carboxyl-terminal of the precursor protein. The 29-kDa subunit itself appeared to be a proteinase, for this subunit had 52% sequence identity with Sarcophaga cathepsin L, while 26-kDa subunit had no significant similarity. We also showed that 26/29-kDa proteinase was insensitive to specific inhibitors of cathepsin L. These results indicate that this proteinase is a novel member of the papain family. We isolated similar cDNAs from Drosophila melanogaster and Periplaneta americana (cockroach), suggesting that this proteinase is conserved in a wide variety of insects and participates in their defense mechanisms.  相似文献   

3.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent.  相似文献   

4.
The nuclear gene coding for the imported 14-kDa subunit of the ubiquinol-cytochrome c reductase of yeast mitochondria has been sequenced in an attempt to define regulatory and protein topogenic elements. The gene has a length of 381 base pairs and is potentially capable of encoding a polypeptide of 14561 Da. It is transcribed into a single low-abundance RNA of 680 nucleotides whose 5' and 3' termini map, respectively, 30-35 nucleotides upstream and 180-190 nucleotides downstream of the initiator and termination codons. Consistent with the estimated low level of the mRNA, codon usage in the gene is not strongly biased and other features, characteristic of highly expressed genes in yeast, are absent. The 14-kDa protein is predicted to be a predominantly hydrophilic protein, with only a single, short hydrophobic stretch located between positions 19-38. Comparison with other imported mitochondrial proteins so far sequenced has failed to reveal unifying features that might serve as targeting elements. Steady-state levels of the 14-kDa and 11-kDa subunits are reduced in mit- mutants which synthesize truncated forms of apocytochrome b and in these, newly synthesized subunits exhibit a specifically increased turnover rate. We suggest that association of these two subunits with the complex may be mediated or enhanced by interaction with other subunits, in particular cytochrome b.  相似文献   

5.
The cytochrome bc1 complex of the yeast Saccharomyces cerevisiae is composed of 10 different subunits that are assembled as a symmetrical dimer in the inner mitochondrial membrane. Three of the subunits contain redox centers and participate in catalysis, whereas little is known about the function of the seven supernumerary subunits. To gain further insight into the function of the supernumerary subunits in the assembly process, we have examined the subunit composition of mitochondrial membranes isolated from yeast mutants in which the genes for supernumerary subunits and cytochrome b were deleted and from yeast mutants containing double deletions of supernumerary subunits. Deletion of any one of the genes encoding cytochrome b, subunit 7 or subunit 8 caused the loss of the other two subunits. This is consistent with the crystal structure of the cytochrome bc1 complex that shows that these three subunits comprise its core, around which the remaining subunits are assembled. Absence of the cytochrome b/subunit 7/subunit 8 core led to the loss of subunit 6, whereas cytochrome c1, iron-sulfur protein, core protein 1, core protein 2 and subunit 9 were still assembled in the membrane, although in reduced amounts. Parallel changes in the amounts of core protein 1 and core protein 2 in the mitochondrial membranes of all of the deletion mutants suggest that these can be assembled as a subcomplex in the mitochondrial membrane, independent of the presence of any other subunits. Likewise, evidence of interactions between subunit 6, subunit 9 and cytochrome c1 suggests that a subcomplex between these two supernumerary subunits and the cytochrome might exist.  相似文献   

6.
Cytochrome b558 in phagocytes is a transmembrane protein composed of large and small subunits and considered to play a key role in O2- generation during the respiratory burst. The COOH-terminal regions of the cytochrome subunits protrude to the cytoplasmic side and are assumed to be the sites for association with cytosolic components to form an active O(2-)-generating complex (Imajoh-Ohmi, S., Tokita, K., Ochiai, H., Nakamura, M., and Kanegasaki, S. (1992) J. Biol. Chem. 267, 180-184). We show here that two synthetic peptides corresponding to the COOH-terminal region of each subunit inhibit NADPH-dependent oxygen uptake induced by sodium dodecyl sulfate (SDS) in a cell-free system consisting of plasma membrane and cytosol. The inhibition was observed when either peptide was added to the system before, but not after, the activation with SDS suggesting that interaction between the COOH-terminal regions of the cytochrome subunits and cytosolic components is important for the assembly and the activity of the O(2-)-generating system. Using the cross-linking reagent dimethyl 3,3'-dithiobis-propionimidate, we found that the cytosolic 47-kDa protein, an essential component of the O(2-)-generating system, interacted with the synthetic peptides in the presence of SDS. In addition to the 47-kDa protein, a 17-kDa protein was found to be associated with the peptide corresponding to the COOH-terminal region of the small subunit. These results indicate that the cytosolic COOH-terminal regions of cytochrome b558 subunits are the binding sites for both the cytosolic 47-kDa protein and the 17-kDa protein and that the binding takes place during activation of the system.  相似文献   

7.
8.
The wide range of functions attributed to GTP-binding regulatory proteins (G proteins) is reflected in the structural diversity which exists among the alpha, beta, and gamma subunits of G proteins. Recently two cDNA clones encoding beta subunits, beta 1 and beta 2, were isolated from bovine and human cDNA libraries. We report here that the beta 2 gene encodes the 35-kilodalton (kDa) component of the beta 35/beta 36 subunit of G proteins and that the beta 1 gene encodes the 36-kilodalton component. The in vitro translation product of the beta 2 cDNA co-migrates with the 35-kDa beta subunit (beta 35), while the in vitro product of the beta 1 cDNA co-migrates with the 36-kDa beta subunit (beta 36) on denaturing polyacrylamide gels. In addition, antisera generated against synthetic beta 2 peptides bind specifically to the beta 35 component of isolated G proteins and to a 35-kDa protein in myeloid cell membranes. Our results suggest that the two beta subunits could serve distinct functions, as they are derived from separate genes which have been highly conserved in evolution.  相似文献   

9.
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second beta-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.  相似文献   

10.
The structure and the orientation of cytochrome c oxidase molecules in crystalline cytochrome c oxidase membranes (Vanderkooi, G., Senior, A.E., Capaldi, R.A., and Hayashi, H. (1972) Biochim. Biophys. Acta 274, 38-48) were studied by image analysis of electron micrographs and by reacting the crystalline preparations with immune gamma-globulins against individual cytochrome c oxidase subunits. Binding of gamma-globulins to the membranes was detected by the following two methods: (a) electrophoretic identification of gamma-globulin polypeptides in the washed membranes; (b) electron microscopic examination of the negatively stained membranes. The membranes bound immune gamma-globulins against subunit IV (which faces the matrix side in intact mitochondria) but failed to bind immune gamma-globulins against subunits II + III (which face the outer side of the inner membrane in intact mitochondria). In contrast, solubilized cytochrome c oxidase bound either of the two immune gamma-globulins. All cytochrome c oxidase molecules in the crystalline membranes are thus asymmetrically arranged so that subunit IV faces outward and subunits II + III face toward the interior. This orientation is opposite to that found with intact mitochondria. The data also suggest that the crystalline membranes form closed vesicles which are impermeable to externally added gamma-globulins.  相似文献   

11.
NADH: ubiquinone oxidoreductase (complex I), one of the most complicated multi-protein enzyme complexes, is important for energy metabolism because it is the initial enzyme of the mitochondrial respiratory chain. Deficiency of complex I is frequently found in various tissues of patients with neurodegenerative disease. Here we studied the protein levels of complex I 24- and 75-kDa subunits in several brain regions from patients with Down syndrome (DS) and Alzheimer's disease (AD). We determined protein levels of complex I 24-, 75-kDa subunits and mitochondrial marker proteins mitochondrial matrix protein P1 (hsp60) and aconitate hydratase from seven brain regions of patients with DS, AD and controls. Proteins were separated by two-dimensional (2-D) gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Complex I 24-kDa subunit was significantly reduced in occipital cortex and thalamus in patients with DS and temporal and occipital cortices in patients with AD. Complex I 75-kDa subunit was significantly reduced in brain regions from patients with DS (temporal, occipital and caudate nucleus) and AD (parietal cortex). Reductions of two subunits of complex I may lead to the impairment of energy metabolism and result in neuronal cell death (apoptosis), a hallmark of both neurodegenerative disorders.  相似文献   

12.
We have previously demonstrated reassembly of a functional vacuolar (H+)-ATPase from clathrin-coated vesicles using the dissociated peripheral domain (V1) and the membrane-bound integral domain (V0) (Puopolo, K., and Forgac, M. (1990) J. Biol. Chem. 265, 14836-14841). We have used this reassembly procedure to test the function of the 40-kDa subunit of the coated vesicle (H+)-ATPase. In the absence of V0, a fraction of the peripheral subunits reassemble into a V1 subcomplex which contains the 73-kDa A subunit, the 58-kDa B subunit, and the 34- and 33-kDa subunits but lacks the 40-kDa subunit. This subcomplex, which sediments with a mass of approximately 500 kDa, can be separated from the remaining monomeric subunits (and the 40-kDa subunit) by density gradient sedimentation. When dissociated with 0.36 M KI, 2.5 mM ATP, and 2.5 mM MgSO4, and added to membranes from which V1 has been dissociated, this V1(-40 kDa) subcomplex is able to reassemble with V0 to give a (H+)-ATPase with a proton pumping activity approximately half that obtained in the presence of the 40-kDa subunit. The undissociated subcomplex is not competent for assembly of a functional (H+)-ATPase. Interestingly, the monomeric fraction obtained from density gradient sedimentation contains the 40-kDa subunit but lacks the 34-kDa subunit. This monomeric fraction is nevertheless also able to assemble with V0 to give a functional proton pump. The V1V0 complexes assembled in the absence of either the 40- or 34-kDa subunits, while active, are not stable to detergent solubilization and immunoprecipitation, suggesting that both of these subunits play a role in stabilization of the (H+)-ATPase complex. Evidence for interaction between the 40- and 33-kDa subunits is also presented.  相似文献   

13.
A substantial fraction (20-30%) of the bovine rod outer segment phosphodiesterase (PDE) activity is not associated with outer segment membranes prepared with buffers of moderate ionic strength; this PDE activity appears to represent a distinct, soluble isozyme. Although this PDE isozyme can be demonstrated to be present in sealed rod outer segments, it is discarded from most standard rod outer segment preparations. A method was developed that allowed the rapid purification of the soluble rod PDE by 2600-fold, to apparent homogeneity, using a monoclonal antibody column (ROS-1a). The soluble rod PDE isozyme has a novel Mr = 15,000 subunit (delta) in addition to subunits of Mr = 88,000 (alpha sol), 84,000 (beta sol), and 11,000 (gamma sol). The delta subunit comigrates with and may be identical to the cone PDE 15-kDa subunit. The small subunits of the soluble rod PDE and the membrane-associated rod PDE were isolated by reverse-phase chromatography. The gamma sol subunit was a potent inhibitor of trypsin-activated rod PDE, inhibiting 50% of 1 pM PDE activity at a concentration of 11 pM. This concentration was similar to that observed for the gamma subunit of the membrane-associated rod PDE. The purified delta subunit did not appear to affect PDE activity; this subunit was, however, unusually difficult to keep in solution. All of the kinetic and physical properties of the soluble rod PDE tested thus far are similar to those of the membrane-associated form, except for the presence of the delta subunit, suggesting that this unique subunit could mediate the solubility of the soluble rod PDE and the cone PDE in the intact photoreceptor.  相似文献   

14.
Albina Abdrakhmanova 《BBA》2006,1757(12):1676-1682
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second β-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.  相似文献   

15.
Coenzyme QH2-cytochrome c reductase is a multisubunit complex of the mitochondrial respiratory chain. Mutants of Saccharomyces cerevisiae with lesions in cytochromes b, c1, the non-heme iron protein, and the noncatalytic subunits have been used to study several aspects of the assembly of the complex. Strains with mutations in single subunits exhibit a variety of different phenotypes. Mutants in the 17-kDa (core 3) subunit grow normally on a nonfermentable substrate indicating that this component is not essential for either enzymatic activity or assembly of the enzyme. Mutations in all the other subunits express a respiratory-deficient phenotype and the absence of detectable enzyme activity. Among the respiratory-defective strains, some have mature cytochrome b (non-heme iron protein and cytochrome c1 mutants), while other mutants lack spectrally detectable cytochrome b and have reduced levels of the apoprotein (mutants in the 44-, 40-, 14-, and 11-kDa core subunits). Mutations in single subunits exert different effects on the concentrations of their partner proteins. These may be summarized as follows: 1) No substantial loss in the 44- or 40-kDa core subunits is seen in single mutants; 2) the concentration of cytochrome c1 is also relatively unaffected by mutations in the other subunits except for the cytochrome b mutant which has 60% of the wild type level of cytochrome c1; 3) all the single mutants have only 15-20% of the normal amount of non-heme iron protein; 4) mutations in the non-heme iron protein have no appreciable effect on the concentrations of the other subunits; 5) mutations in single subunits cause parallel decreases in the concentrations of cytochrome b, the 14-, and the 11-kDa subunits. These results indicate that the synthesis or stability of a subset of subunits depends on the presence of other subunit polypeptides of the complex. At present we favor the idea that the observed changes in the concentrations of some subunits are due to higher turnover rates of the proteins in a partially assembled complex. Based on the mutant phenotypes, a tentative model for the assembly of coenzyme QH2-cytochrome c reductase is proposed. According to this model it is envisioned that the subunits interact with one another in the lipid bilayer. Maturation of apocytochrome b occurs after it is assembled with the nonstructural subunits to form a core structure. This intermediate complex interacts with the non-heme iron protein to form the active holoenzyme.  相似文献   

16.
In a previous paper (Van 't Sant, P., Mak, J.F.C. and Kroon, A.M. (1981) Eur. J. Biochem. 121, 21–26) we showed the existence of three elongated precursor proteins (45, 36 and 25 kDa) of mitochondrial translation products in Neurospora crassa. We presented some indications that the largest precursor could be related to subunit 1 of cytochrome c oxidase. Here we present conclusive evidence that the 45-kDa polypeptide is indeed this precursor by demonstrating that an immunodetectable 45-kDa polypeptide displays the same behaviour as the labeled 45-kDa precursor; both accumulate after long incubation with cycloheximide or by decreasing the temperature and both are not tightly membrane bound. Moreover the antibody against subunit 1 of cytochrome c oxidase also recognizes, in immunoadsorption experiments, besides subunit 1, the 45-kDa polypeptide accumulated by cycloheximide incubation. Furthermore, we developed a small scale purification of antibodies against subunit 1 of cytochrome c oxidase. By means of these purified antibodies it is demonstrated that the 45-kDa polypeptide and subunit 1 have corresponding antigenic determinants. Under the various conditions tested, all three precursors are less firmly membrane-bound than the mature subunits. Finally, it is observed that in short incubations in vivo, chloramphenicol inhibits the processing of the mitochondrially synthesized precursors, under conditions where mitochondrial translation is only partially inhibited.  相似文献   

17.
Human phagocyte cytochrome b is the terminal component of the microbicidal superoxide generating system. Although the primary structure of this protein has been determined, little is known about the placement of the heme prosthetic groups in this heterodimeric integral membrane protein. Analysis of the cytochrome using lithium dodecyl sulfate-polyacrylamide gel electrophoresis at 0 degree C followed by tetramethylbenzidine heme staining demonstrated the presence of heme in both the 91- and 22-kDa subunits identified by Western blot analysis using peptide specific antisera. Exposure of cytochrome b (purified or in isolated neutrophil plasma membranes) to Staphylococcal protease V8 or trypsin did not affect absorbance spectra. However, such treatment resulted in degradation of both subunits to smaller fragments, including characteristic immunoreactive 20-kDa fragments of both the large and small subunits of the cytochrome that retained one or both of the hemes. The spectral stability to proteolysis and size of the proteolytic heme-containing fragments generated explains previous reports which suggested that the heme resided in the small subunit. Our current results indicate that human neutrophil cytochrome b is a bi-heme or possibly tri-heme molecule with at least one heme residing in the large subunit and one shared between both subunits and that the heme-containing regions of the cytochrome probably lie within the membrane lipid bilayer. Such a multi-heme structure would be consistent with an electron transfer function for this cytochrome by providing an efficient mechanism for transferring electrons across the plasma membrane to the extracellular surface where oxygen could be reduced to create superoxide.  相似文献   

18.
The gene coding for four subunits of cytochrome aa3-type oxidase was isolated from a genomic DNA library of the thermophilic bacterium PS3 and sequenced. The N-terminus of each subunit was also sequenced to verify the initiation site of the reading frame. The deduced amino acid sequences contained 615 amino acid residues for subunit I (CO1/caaB product), 333 residues for subunit II (CO2/caaA product), 207 residues for subunit III (CO3/caaC product), and 109 residues for subunit IV (CO4/caaD product) after processing. Re-examination of the sequencing of caa revealed a longer open reading frame for CO1, which contains 14 transmembrane segments instead of 12 [Sone et al. (1988) J. Biochem. 103, 606-610], although the main portions of the sequences constituting cytochrome a (FeA), cytochrome a3 (FeB), and CuB are correct. PS3 CO2 has an additional sequence for cytochrome c after the CuA binding protein portion with 2 transmembrane segments, which is homologous to the mitochondrial counterpart. PS3 CO3 has DCCD-binding glutamyl residues but contains only 5 transmembrane segments, unlike the mitochondrial counterpart, which has 7 segments. The subunits of PS3 cytochrome oxidase (aa3-type) show clear similarity in amino acid sequences with those of cytochrome bo-type oxidase from Escherichia coli as well, in spite of the difference of hemes. PS3 CO3 and CO4 are much more similar to E. coli CO3 and CO4 than to mitochondrial CO3 and CO4, respectively.  相似文献   

19.
Canine microsomal signal peptidase activity was previously isolated as a complex of five subunits (25, 22/23, 21, 18, and 12 kDa). Two of the signal peptidase complex (SPC) subunits (23/23 and 21 kDa) have been cloned and sequenced. One of these, the 21-kDa subunit, was observed to be a mammalian homolog of SEC11 protein (Sec11p) (Greenburg, G., Shelness, G. S., and Blobel, G. (1989) J. Biol. Chem. 264, 15762-15765) a gene product essential for signal peptide processing and cell growth in yeast (B?hni, P.C., Deshqies, R.J., and Schekman, R.W. (1988) J. Cell Biol. 106, 1035-1042). cDNA clones for the 18-kDa SPC subunit have now been characterized and found to encode a second SEC11p homolog. Both the 18- and 21-kDa canine SPC subunits are integral membrane proteins by virtue of their resistance to alkaline extraction. Upon detergent solubilization, both proteins are found in a complex with the 22/23 kDa SPC subunit, the only SPC subunit containing N-linked oligosaccharide. No steady-state pool of canine Sec11p-like monomers is detected in microsomal membranes. Alkaline extraction of microsomes prior to solubilization or solubilization at alkaline pH causes partial dissociation of the SPC. The Sec11p-like subunits displaced from the complex under these conditions demonstrate no signal peptide processing activity by themselves. The existence of homologous subunits is common to a number of known protein complexes and provides further evidence that the association between SPC proteins observed in vitro may be physiologically relevant to the mechanism of signal peptide processing and perhaps protein translocation.  相似文献   

20.
Inactivation of the gene encoding the 11-kDa subunit VIII of yeast ubiquinol:cytochrome c oxidoreductase leads to an inactive complex, which lacks detectable cytochrome b [Maarse, A. C., De Haan, M., Schoppink, P. J., Berden, J. A. and Grivell, L. A. (1988) Eur. J. Biochem. 172, 179-184] and in which the steady-state levels of the Fe-S protein and the 14-kDa subunit VII are severely reduced. When the 11-kDao mutant is transformed with a gene encoding a protein consisting of the 11-kDa protein minus its last 11 amino acids and fused to a 7-amino-acid sequence encoded by a stop oligonucleotide, the complex is assembled normally. Enzyme activity is similar to that of the wild type, as is also the sensitivity of the complex to antimycin and myxothiazol. Transformation of the mutant with a gene encoding a protein consisting of the 11-kDa protein lacking the last 43 amino acids (i.e. almost half the protein) and fused to the same 7-amino-acid sequence as above, gives partial restoration of the complex. The Fe-S protein and the 14-kDa subunit VII still exhibit low steady-state levels, but cytochrome b is present again, albeit at a strongly reduced level. Electron transport activity is also partially restored and correlates with the level of cytochrome b indicating that the turnover number of the complex is similar to that of wild-type complex III. These findings demonstrate the important role played by the 11-kDa protein in the stabilization of cytochrome b. They also imply that at least the C-terminal half of the 11-kDa protein is not part of an ubiquinol-binding site. Moreover, since the deletion has no effect on the sensitivity of the complex to myxothiazol and antimycin, at least this part of the protein is probably not involved in binding of these inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号