首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
R Sharf  P Weisman-Shomer  M Fry 《Biochemistry》1988,27(8):2990-2997
Factor D, a DNA binding protein that enhances the activities of diverse DNA polymerases with a common restricted set of templates, was initially characterized in mouse liver but has resisted extensive purification. In this paper, we report that a similar stimulatory activity can be obtained in highly purified form from nuclei of rabbit hepatocytes. The rabbit liver protein increases the rates at which several DNA polymerases copy sparsely primed natural DNA templates and primed synthetic poly(dT), but it has no effect on the rates of copying of activated DNA or of poly(dG), poly(dA), and poly(dC). Direct binding of the purified stimulatory protein to an oligomer that contains a (dT)16 base stretch is visualized by retardation of the nucleoprotein complex on nondenaturing electrophoretograms. In the presence of the enhancing factor, Michaelis constants, Km, of responsive polymerase for singly primed bacteriophage M13 DNA and for poly(dT), but not for poly(dA), are decreased. Product analysis of M13 DNA primer extension indicates that the rabbit factor augments the apparent processivity of DNA polymerase by decreasing the extent of enzyme pausing at a tract of four consecutive thymidine residues in the template. Gel filtration of the native stimulatory protein yields an apparent relative molecular size of 58 +/- 2 kilodaltons. Stimulatory activity is readily inactivated by heat or by trypsin digestion, but it is resistant to micrococcal nuclease, N-ethyl-maleimide, or calcium ions.  相似文献   

2.
We have undertaken a search for mammalian DNA-binding proteins that enhance the activity of DNA polymerases in a template sequence-specific fashion. In this paper, we report the extensive purification and characterization of a new DNA-binding protein from rabbit liver that selectively stimulates DNA polymerases to copy synthetic poly[d(G-C)] and the poly(dC) strand of poly(dC).poly(dG) as well as single-stranded natural DNA that contains stretches of oligo(dC). The enhancing protein, a polypeptide of 65 kDa designated factor C, stimulates the copying of the two synthetic templates by Escherichia coli DNA polymerase I, Micrococcus luteus polymerase, and eukaryotic DNA polymerases alpha and beta, but not by avian myeloblastosis virus polymerase. Factor C, however, does not affect utilization by these polymerases of the poly(dG) strand of poly(dC).poly(dG), of poly(dC) primed by oligo(dG), or of poly(dA).poly(dT) and poly[d(A-T)]. With polymerase I, Michaelis constants (Km) of poly[d(G-C)] and of the poly(dC) strand of poly(dC).poly(dG) are decreased by factor C 37- and 4.7-fold, respectively, whereas maximum velocity (Vmax) remains unchanged. By contrast, neither the Km value of the poly(dG) strand of poly(dC).poly(dG) nor the Vmax value with this template is altered by factor C. Rates of copying of activated DNA, denatured DNA, or singly primed M13 DNA are not affected significantly by factor C. However, primer extension analysis of the copying of recombinant M13N4 DNA that contains runs of oligo(dC) within an inserted thymidine kinase gene shows that factor C increases processivity by specifically augmenting the efficiency at which polymerase I traverses the oligo(dC) stretches. Direct binding of factor C to denatured DNA is indicated by retention of the protein-DNA complex on columns of DEAE-cellulose. Binding of factor C to poly[d(G-C)] is demonstrated by the specific adsorption of the enhancing protein to columns of poly[d(G-C)]-Sepharose. We propose that by binding to poly[d(G-C)] and to poly(dC).poly(dG), factor C enables tighter binding of some DNA polymerases to these templates and facilitates enzymatic activity.  相似文献   

3.
4.
The DNA sequence specificity of stimulation of DNA polymerases by factor D   总被引:1,自引:0,他引:1  
The mechanism of enhancement of DNA polymerase activity by the murine DNA-binding protein factor D was investigated. Extension by Escherichia coli DNA polymerase I and calf thymus DNA polymerase-alpha of 5'-32P-labeled oligodeoxynucleotide primers that are complementary to poly(dT) or to bacteriophage M13 DNA was measured in the absence or presence of factor D. With 5'-[32P](dA)9.poly(dT), factor D enables E. coli polymerase I to fill approximately 15-nucleotide gaps between adjacent primers; whereas in the absence of the stimulatory protein, poly(dT) is not copied significantly. In order to study the nucleotide specificity of synthesis enhancement, we used M13mp10 DNA containing 4 consecutive thymidine residues downstream from the 3-hydroxyl terminus of an oligonucleotide primer. Upon addition of factor D, both polymerase I and polymerase-alpha can traverse this sequence more efficiently and thus generate longer DNA products. Densitometric analysis of nonextended and elongated 5'-32P-labeled M13 primer indicates that, without changing the frequency of primer utilization, factor D enhances the activity of these DNA polymerases by increasing their apparent processivity. By positioning oligonucleotide primers 4, 8, and 12 bases upstream from the (dT)4 template sequence, we show that the enhancement of synthesis by factor D is independent of the position of the oligothymidine cluster. We hypothesize that factor D interacts with oligo(dT).oligo(dA) domains in DNA to alter their conformation, which may normally obstruct the progression of DNA polymerases.  相似文献   

5.
M Fry  J Lapidot  P Weisman-Shomer 《Biochemistry》1985,24(26):7549-7556
A protein that specifically enhances up to 13-fold the rate of copying of poly(dT) template by DNA polymerase alpha was partially purified from chromatin of regenerating mouse liver cells. This stimulatory protein, designated herein factor D, also increases 2-3-fold the activity of polymerase alpha with heat-denatured DNA and with primed, circular single-stranded phi X174 DNA. However, factor D has no detectable effect on the copying by polymerase alpha of poly(dG), poly(dA), and poly(dC) templates. Activity of mouse DNA polymerase beta is not affected by factor D with all the tested templates. In contrast to polymerase alpha, factor D is resistant to inactivation by N-ethylmaleimide and calcium ions, but it is readily heat-inactivated at 46 degrees C and is inactivated by trypsin digestion. Partially purified factor D is not associated with detectable activities of DNA polymerase, DNA primase, deoxyribonucleotidyl terminal transferase, and endo- or exodeoxyribonuclease.  相似文献   

6.
A novel factor that stimulates DNA polymerase alpha activity on poly(dA) X oligo(dT) has been identified and partially purified from mouse FM3A cells. The assay system for the factor contained poly(ethylene glycol) 6000. The activities of DNA polymerase alpha on poly(dA) X oligo(dT) in the presence and absence of the stimulating factor were increased greatly by the addition of poly(ethylene glycol). Stimulation by the factor was observed at all the primer to template ratios tested from 0.01 to 0.3. The highest activity was observed at the ratio of 0.05, corresponding to about 3.3 primers on one template in the presence of the factor. The concentration of DNA polymerase alpha used in the assay affected the stimulation by the factor, and the stimulation became more prominent at concentrations of the enzyme lower than 0.04 unit per assay. The stimulating factor lowered the Km value of DNA polymerase alpha for the template-primer, though they had no effect on the Km value for dTTP substrate. The results of product analysis suggested that the stimulation by the factor is mainly due to the increase in the initiation frequency of DNA synthesis from the primers. The stimulating factor specifically stimulated DNA polymerase alpha but not DNA polymerases beta and gamma. Furthermore, the factor formed a complex with DNA polymerase alpha under a certain condition.  相似文献   

7.
Three different DNA polymerases have been isolated from rat ascites hepatoma cells [1--3]. The molecular weight of a DNA polymerase (polymerase C) purified from the soluble fraction of the cells was estimated to be 142 000 by sedimentation on a sucrose gradient, while the molecular weights of two DNA polymerases (polymerase P-1 and P-2) purified from nuclear membrane-chromatin fraction were estimated to be 117 000 and 44 000, respectively, by the same method. Under certain conditions, the poly (dT) strand of poly[(dA)-(dT)] was copied well by the polymerases, especially by the nuclear polymerases. Poly (dC) was a good template for the high molecular weight DNA polymerases C and P-1, but poly(dT) and poly(dA) were not effective templates. By addition of complementary oligoribonucleotides, the single-stranded deoxypolymers were copied by the high molecular weight polymerases C and P-1. When single-stranded fd phage DNA was used as template, the polymerization reactions by the high molecular weight polymerases were stimulated by the concomitant synthesis of RNA. This indicates that the oligoribonucleotide acts as a primer in these reactions.  相似文献   

8.
Human cyclin/PCNA (proliferating cell nuclear antigen) is structurally, functionally, and immunologically homologous to the calf thymus auxiliary protein for DNA polymerase delta. This auxiliary protein has been investigated as a stimulatory factor for the nuclear DNA polymerases from S. cerevisiae. Calf cyclin/PCNA enhances by more than ten-fold the ability of DNA polymerase III to replicate templates with high template/primer ratios, e.g. poly(dA).oligo(dT) (40:1). The degree of stimulation increases with the template/primer ratio. At a high template/primer ratio, i.e. low primer density, cyclin/PCNA greatly increases processive DNA synthesis by DNA polymerase III. At low template/primer ratios (e.g. poly(dA).oligo(dT) (2.5:1), where addition of cyclin/PCNA only minimally increases the processivity of DNA polymerase III, a several-fold stimulation of total DNA synthesis is still observed. This indicates that cyclin/PCNA may also increase productive binding of DNA polymerase III to the template-primer and stabilize the template-primer-polymerase complex. The activity of yeast DNA polymerases I and II is not affected by addition of cyclin/PCNA. These results strengthen the hypothesis that yeast DNA polymerase III is functionally analogous to the mammalian DNA polymerase delta.  相似文献   

9.
An auxiliary protein for DNA polymerase-delta from fetal calf thymus   总被引:62,自引:0,他引:62  
An auxiliary protein which affects the ability of calf thymus DNA polymerase-delta to utilize template/primers containing long stretches of single-stranded template has been purified to homogeneity from the same tissue. The auxiliary protein coelutes with DNA polymerase-delta on DEAE-cellulose and phenyl-agarose chromatography but is separated from the polymerase on phosphocellulose chromatography. The physical and functional properties of the auxiliary protein strongly resemble those of the beta subunit of Escherichia coli DNA polymerase III holoenzyme. A molecular weight of 75,000 has been calculated from a sedimentation coefficient of 5.0 s and a Stokes radius of 36.5 A. A single band of 37,000 daltons is seen on sodium dodecyl sulfate gel electrophoresis, suggesting that the protein exists as a dimer of identical subunits. The purified protein has no detectable DNA polymerase, primase, ATPase, or nuclease activity. The ability of DNA polymerase-delta to replicate gapped duplex DNA is relatively unaffected by the presence of the auxiliary protein, however, it is required to replicate templates with low primer/template ratios, e.g. poly(dA)/oligo(dT) (20:1), primed M13 DNA, and denatured calf thymus DNA. The auxiliary protein is specific for DNA polymerase-delta; it has no effect on the activity of calf thymus DNA polymerase-alpha or the Klenow fragment of E. coli DNA polymerase I with primed homopolymer templates. Although the auxiliary protein does not bind to either single-stranded or double-stranded DNA, it does increase the binding of DNA polymerase-delta to poly(dA)/oligo(dT), suggesting that the auxiliary protein interacts with the polymerase in the presence of template/primer, stabilizing the polymerase-template/primer complex.  相似文献   

10.
We have demonstrated that calf thymus DNA polymerases alpha and delta are capable of highly processive DNA synthesis. Processivity values between 300 and 2000 nucleotides were observed when poly(dA)-oligo(dT) or singly primed single-stranded circular bacteriophage M13 DNA at pH 6.0 and 1 mM magnesium chloride was used. These conditions do not correlate with conditions, pH 7.0 and 5 mM magnesium chloride, that support the maximum synthetic rate. Lowering the pH and magnesium concentration lowers the Km value of the reaction with respect to primer terminus concentration. Furthermore, under these same conditions, both polymerases become insensitive to dissociation from the template as a result of encountering the 5' ends of primers. Overall, these results suggest that the affinity of the polymerases for the primer termini is higher throughout the polymerization reaction of pH and magnesium concentrations are lowered from those favoring maximum synthetic rate. Experiments with short primer templates, however, indicate that this higher affinity does not cause the DNA polymerase to remain stably bound after synthesizing up to the end of the template.  相似文献   

11.
The reversed-phase chromatography technique was employed in the measurement of DNA synthesis at the primers d(pT)n, r(pU)n, d(pA)n, and r(pA)n (n = 1-16) in the presence of template poly(dA) or poly(dT). DNA synthesis was catalyzed by Escherichia coli DNA polymerase I Klenow fragment, Physarum polycephalum DNA polymerase beta-like, P. polycephalum DNA polymerase alpha, and human placenta DNA polymerase alpha. Values of Km and Vmax were measured as functions of the primer chain lengths. It was found that all mononucleotides and small oligonucleotides served as primers of DNA synthesis. Values of the logarithm of both Km and Vmax increased linearly until primers had attained a chain length of 9-12 nucleotides, where a break was observed. The incremental as well as the absolute values of Km were interpreted in terms of free binding energies. These together with other data indicate that the 3'-ultimate nucleotide of the primer contributes a decisive amount of free energy of binding to DNA polymerase both from the nucleoside and from the phosphate moiety. The incremental increase is due to a complementary interaction between bases of primer and template buried in the binding cleft of the polymerase. It is also the ultimate nucleotide that determines whether the ribonucleotide or the deoxyribonucleotide is an efficient primer. It is of interest that the major results seem preserved for all four DNA polymerases. An energetic model for the binding of the template-primer was proposed and compared with available crystallographic data.  相似文献   

12.
13.
A study of the inhibition of mouse cellular DNA polymerases by poly-nucleotides and their vinyl analogs is presented. Poly(dT)-directed poly(dA) synthesis by representatives of all three classes of cellular DNA polymerase could be completely inhibited by poly(9-vinyladenine), although higher concentrations were required in the case of the gamma class enzyme. Studies on the mechanism of the inhibition using the alpha class DNA polymerase and different templates showed that the enzyme activity was inhibited in all cases where base-pairing between the vinyl polymer and the template occurred; poly(9-vinyladenine) did not interfere with the replication of templates to which it does not bind. The inhibition occurred shortly after addition of poly(9-vinyladenine) to ongoing reactions, yet the enzyme was not displaced from the template - primer complex.  相似文献   

14.
Evidence for template-specific sites in DNA polymerases   总被引:3,自引:0,他引:3  
Using rabbit hemoglobin messenger RNA as template, E. coli polymerase I produces poly (dT), poly (dA)·(dT) and antimessenger DNA products. Mild heating of the enzyme causes a differential loss in activity as indicated by three rates of inactivation for the three types of synthesis. Heat inactivation studies have also been carried out with DNA polymerases from oncogenic RNA viruses and mammalian sources using various homopolymer-oligomer pairs as primertemplates. In general, for any given enzyme these synthetic primer-templates reveal different extents of inactivation of the polymerase. These findings may be interpreted to suggest a) that the binding of DNA polymerase to various primer-templates produces conformational changes in the enzyme which are dependent on the type of template bound, or b) that many, if not all, DNA polymerases have different subsites for different templates.  相似文献   

15.
M de Turenne 《Biochimie》1978,60(8):705-713
A soluble DNA polymerase has been purified near to homogeneity from Bombyx mori silkglands. The following characteristics were observed: high molecular weight (about 150 000 - 220 00); optimum pH about 8; inhibition by high salt concentrations, sulfhydryl-group blocking agents and polyamines; absence of nuclease activity; preference for magnesium as required divalent cation with all the efficient template-primers tested; and clear template-primer specificity, the purified enzyme being able to copy primed - polydeoxyribonucleotide templates [activated DNA, poly(dA).oligo(dT), poly(dA).oligo(rU)] but not polyribonucleotide chains [poly(rA).oligo(dT), poly(rA).oligo(rU)] in the presence of either Mg++ or MN++. Believed to represent the bulk of silkgland DNA polymerase activity, the purified soluble enzyme most resembles vertebrate DNA polymerases alpha when it is compared to other eukaryotic DNA polymerases as yet characterized.  相似文献   

16.
一种新的DNA多聚酶已从鼻咽癌(NPC)转移淋巴结胞核酶液,通过DEAE-纤维素柱层析而被部分纯化,并可与细胞的α-及β-DNA多聚酶分开。 此酶有下列特点可与细胞DNA多聚酶区分:(1)可放DEAE-纤维素吸附,需用130mMK_2HPO_4缓冲液方可洗脱下来。(2)可被浓盐所激活,150——200mMKCl或75mM(NH_4)_2SO_4可使它显示最高的酶活性。(3)最适pH为8.0。(4)对磷酰甲酸盐的抑制较敏感。(5)能很好地利用某些合成模板,如poly(dA)·oligo(dT)_(10)及poly(dA)·oligo(dT)_(12-18)。但不能利用poly(rA)·oligo(dT)_(10),证明此酶并非细胞的γ-DNA多聚酶,而与巴基特淋巴瘤的EB病毒相关的(EBV)DNA多聚酶性质十分相似。对照的Raji细胞未见此种EBV-DNA多聚酶。 从鼻咽癌淋巴结中分离出此种EBV-DNA多聚酶,将对EB病毒与NPC的发病关系提供新的证据。  相似文献   

17.
DNA polymerases alpha and beta (EC 2.7.7.7.) from calf thymus could utilize dUTP as a substrate for DNA synthesis as well as DNA polymerase I of Escherichia coli. Deoxyuridylate was incorporated into DNA by replacing deoxythymidylate and supported the further elongation of DNA chains on activated DNA or on the intiated homopolymers, poly(dA) . (dT)10 and poly(rA) . (dT)10. The rate of the incorporation of deoxyuridylate into DNA varied from 50 to 160% of that of deoxythymidylate, depending on the nature of the template primers and the species of DNA polymerase used. The apparent Km values for dUTP were very similar to those for dTTP. Uracil DNA-glycosylase excised efficiently the uracil residues in products of DNA polymerase reactions with either activated calf thymus DNA or initiated homopolymers.  相似文献   

18.
Optimal conditions for polymerization reaction catalyzed on poly(dA) and poly(dT) templates by DNA polymerases from thermoacidophilic archaebacteria--DNA polymerase A from Sulfolobus acidocaldarius and DNA polymerase B from Thermoplasma acidophilum--have been established. Values of Km and Vmax (60 degrees C) for a set of primers d(pA)n and d(pT)n have been estimated. Minimal primers for both enzymes are dNMP. Lengthening of primers by each mononucleotide increases their affinity about 2.16-fold. Linear dependence of log Km and of log vmax on the number of mononucleotide links in primers (n) has breaking point at n = 10. The value of Vmax is about 20% of that for decanucleotide. The affinity of the primer d(pA)9p(rib*) with a deoxyribosylurea residue at the 3'-end does not differ essentially from that of d(pA)9. Substitution of the 3'-terminal nucleotide of a complementary primer for a noncomplementary nucleotide, e.g., substitution of 3'-terminal A for C in d(pA)10 in the reaction catalyzed on poly(dT), decreases the affinity of a primer by one order of magnitude.  相似文献   

19.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

20.
Microtubule-associated protein 2 (MAP2) isolated from porcine brains stimulated the activity of DNA polymerase alpha immunopurified from calf thymus or human lymphoma cells, in a dose-dependent manner. This stimulation was pronounced when activated DNA or poly(dA).(dT)10 was used as the template-primer. DNA polymerase alpha bound to a MAP2-immobilized column, whereas preincubation of the enzyme with unbound MAP2 prevented binding to the column. These events suggested that a physical binding occurred between the polymerase and MAP2. Kinetic analyses revealed that MAP2 decreased the Km value of the polymerase for deoxyribonucleotides, irrespective of the species of template-primer. A concomitant increase in Vmax was observed; however, the extent of the increase depended on the species of template-primer. MAP2 also decreased the Km value of the polymerase for template-primers when activated DNA of poly(dA).(dT)10 was used as the template-primer. Product analyses showed that MAP2 did not significantly alter the processivity of the polymerase and the increment of Vmax is considered to be due to an increase in the frequency of initiation of DNA synthesis. The stimulation by MAP2 occurred specifically in the activity of DNA polymerase alpha, but not DNA polymerases beta, gamma, and I from Escherichia coli. Other MAPs, tau and 190-kDa MAP, could substitute for MAP2. Thus, the specific stimulation of DNA polymerase alpha by MAPs supports the notion of a possible involvement of MAPs or MAP-like proteins in DNA replication, in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号