首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geotrichum candidum is a yeast-like filamentous fungus that has attracted industrial interest. The present work investigated G. candidum biomass production in agro-industrial wastewaters (olive mill wastewater (OMW) and cheese whey (CW)) as the only substrate. Different solid media (Sabouraud dextrose agar (SDA), CW, OMW, and OMW/CW mixtures in different proportions) were tested. OMW/CW mixtures proved to be suitable for optimal mycelia growth of G. candidum with a very high hyphae density. The highest fungal and expansion rate growth of 83 ± 1 mm and 12.4 day−1, respectively, were obtained on a 20:80 mixture of OMW/CW, which was incubated for 7 days. This optimal mixture was used to study the biomass production and the OMW decolorization ability of G. candidum in the presence of CW in liquid medium. Liquid cultures were also conducted in OMW and CW separately. After 5 days of incubation, fungal biomass reached 9.26 g l−1 in the OMW/CW mixture and only 2.83 g l−1 in CW, while no biomass production was observed in OMW alone. OMW decolorization and dephenolization by G. candidum also improved in the presence of CW with a decolorization efficiency of 54.5% and a total phenolic reduction of 55.3%, compared with the control which yielded values of about 10% and 15%, respectively. These results suggested that OMW/CW—as the only substrate—could be used as a cost-effective medium to produce G. candidum biomass, without the need for water dilution or supplementation with other nutriments.  相似文献   

2.
3.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

4.
The susceptibility of larvae of the leek moth, Acrolepiopsis assectella Zeller (Lepidoptera: Acrolepiidae) to different concentrations of an autochthonous strain of Steinernema feltiae (Rhabditida: Steinernematidae) was examined in laboratory experiments using Petri dishes. The efficacy of this strain in pots and field experiments was also evaluated. High mortality (80%–100%) of leek moth larvae was observed when these larvae were exposed to low concentrations (3 × 103 to 1 × 104 IJs/m2) of S. feltiae under laboratory conditions. Foliar application of 30,000 IJs/leek in pot experiments caused a 98% reduction in leek moth larvae. Field experiments showed a 87.7% reduction of leek moth larvae with the nematode treatment, significantly higher than the 22% reduction with the Bacillus thuringiensis treatment. The efficacy of the treatments with S. feltiae in relation to the microhabitat of the leek moth larvae between the interfolded leaves of the leek is discussed.  相似文献   

5.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

6.
The ammonia oxidizers Nitrosomonas europaea and Nitrosomonas eutropha are able to grow chemoorganotrophically under anoxic conditions with pyruvate, lactate, acetate, serine, succinate, α-ketoglutarate, or fructose as substrate and nitrite as terminal electron acceptor. The growth yield of both bacteria is about 3.5 mg protein (mmol pyruvate)−1 and the maximum growth rates of N. europaea and N. eutropha are 0.094 d−1 and 0.175 d−1, respectively. In the presence of pyruvate and CO2 about 80% of the incorporated carbon derives from pyruvate and about 20% from CO2. Pyruvate is used as energy and only carbon source in the absence of CO2 (chemoorganoheterotrophic growth). CO2 stimulates the chemoorganotrophic growth of both ammonia oxidizers and the expression of ribulose bisphosphate carboxylase/oxygenase is down-regulated at increasing CO2 concentration. Ammonium, although required as nitrogen source, is inhibitory for the chemoorganotrophic metabolism of N. europaea and N. eutropha. In the presence of ammonium pyruvate consumption and the expression of the genes aceE, ppc, gltA, odhA, and ppsA (energy conservation) as well as nirK, norB, and nsc (denitrification) are reduced.  相似文献   

7.
The effect of visual cue color and size, volume of para-anisaldehyde (plant-derived semiochemical), and airflow on thrips behavior were examined in a flight chamber. After 5 min more female Frankliniella occidentalis (western flower thrips) landed on sticky traps containing yellow plastic squares (100 cm2) (55.2% of those that flew landed on the trap) than blue (21%), white (4.7%), or transparent traps (2%). The percentage of thrips caught on traps increased with increasing size of the visual cues (0 and 1 cm2 (4%), 4 cm2 (16%), 25 cm2 (44–49%), 100 cm2 (60%)). Using a yellow (100 cm2) square, fewer thrips flew in the presence of 1.0 ml (47%) or 2 ml (55%) of para-anisaldehyde than of 0.5 ml (78%). However, more thrips landed on a trap with a 100 cm2 yellow square when 1 ml of para-anisaldehyde (81%) was added than when 0.5 ml (55%) or 2 ml (62%) were added. Airflow (0–0.3 m/s) did not affect the percentage of thrips that flew or landed on traps. Results suggest that thrips responded to a yellow cue in the absence of UV. Further, the volume of para-anisladehyde affected the percentage that flew or landed on a trap containing a yellow cue.  相似文献   

8.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

9.
Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae) are major pests in greenhouse grown cucumber crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown an effective biological control agent of both pests. Hence, perhaps both pests can be controlled simultaneously by this predator. However, with simultaneous infestation of both pests, synergistic effects, or interference could affect biological control and perhaps require changes in release rates of the predator. Thus, the aim of the present study was to evaluate different release rates of A. swirskii to control both pests under a worst case scenario of rapid immigration into a cucumber greenhouse. Two experiments were conducted, one simulating the influx of whiteflies alone (whitefly experiment) and the other immigration of whiteflies and thrips together (whitefly plus thrips experiment). Three treatments were compared in the whitefly experiment: (1) B. tabaci alone, (2) B. tabaci + 25 A. swirskii m−2 and (3) B. tabaci + 75 A. swirskii m−2. The high release rate was more effective than the low rate in controlling B. tabaci alone. The high rate was subsequently tested against B. tabaci and F. occidentalis for the whitefly and thrips experiment in which five treatments were compared: (1) B. tabaci alone, (2) F. occidentalis alone, (3) B. tabaci + 75 A. swirskii m−2, (4) F. occidentalis + 75 A. swirskii m−2 and (5) B. tabaci + F. occidentalis + 75 A. swirskii m−2. This rate of A. swirskii controlled whiteflies and thrips either alone or together. Therefore, 75 A. swirskii m−2 should be an adequate rate for controlling both pests either alone or simultaneously in cucumber greenhouses.  相似文献   

10.
A mutant designated as UV-3 was obtained from wild-type Enterobacter aerogenes 10293 through u.v. radiation. The activities of α-acetolactate decarboxylase (Ald), lactate dehydrogenase (Ldh) and diacetyl reductase (Dr) in UV-3 were strongly attenuated, with the lowest activities at pH 7.0–7.5, and temperature between 36 and 39°C. Compared to the wild-type, the yield of diacetyl by UV-3 was increased 18.7-fold, up to 1.05 ± 0.01 g l−1. Acetoin and ethanol productions were decreased by 48.4 and 71.4%, respectively, but acetate yield was increased by 34.6%. Optimum medium for diacetyl production by UV-3 contained 10% glucose, 0.5% peptone, 0.5% yeast extract powder, 0.01% (NH4)2SO4, 0.1% citric acid, 0.2% MnSO4 and 0.2% MgSO4, and this was determined by one-factor-at-a-time approach. Data from the five level central composite designs demonstrated that initial pH of 7.0, temperature of 37°C and rotational speed of 180 rev/min were optimum processing parameters for diacetyl production. The maximum yield of diacetyl could reach 1.35 g l−1 in a 5-l bioreactor. These results showed an enhancement of the non-enzymatic oxidative decarboxylation of α-acetolactate and a decrease in the activities of Ald, Ldh and Dr as a consequence of diacetyl accumulation in UV-3.  相似文献   

11.
A reproducible and highly efficient protocol for Agrobacterium tumefaciens-mediated transformation of indica rice (Oryza sativa L. subsp. indica cv. ADT 43) was established. Prior to transformation, embryogenic callus were induced from mature seeds incubated on Linsmaier and Skoog (LS) medium supplemented with 2.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 thiamine-HCl. Callus, intact mature seeds, and other in vitro derived explants (leaf bases, leaf blades, coleoptiles, and root-tips) were immersed in a bacterial suspension culture of A. tumefaciens strain EHA 105, OD600 of 0.8, and co-cultivated on LS medium for 2 days in the dark at 25 ± 2°C. Based on GUS expression analysis, 10 min incubation time of explants on a co-cultivation medium containing 100 μM acetosyringone was optimum. Following β-glucuronidase (GUS) assay and polymerase chain reaction (PCR) analysis, transformants were identified. Stable integration of the transgene was confirmed in four putatively transformed T0 plants by Southern blot analysis. The copy number of the transgene in these lines, one to two, was then determined. Among the observations made, necrosis of co-cultivated explants was a problem, as well as sensitivity of callus to Agrobacterium infection. Levels of necrosis could be minimized following co-cultivation of explants in a medium consisting of 30% LS and containing 10 g l−1 (14), polyvinyl pyrrolidone, 10% coconut water, and 250 mg l−1 timentin (15:1). This latter medium also increased the final transformation efficiency to 15.33%.  相似文献   

12.
Two protocols were developed for the efficient regeneration of Sinningia speciosa from leaf explants via two developmental pathways. The first method involved formation of callus and buds, followed by subsequent root growth, in Murashige and Skoog medium (MS) containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 α-naphthalene acetic acid (NAA), with a regeneration efficiency of 99.0%. The second method involved producing callus and roots, followed by subsequent formation of buds, in MS medium supplemented with 1.0–5.0 mg l−1 NAA, and resulted in a regeneration efficiency of 90.4%. Our experiments indicate that the root-first pathway resulted in a lower plant regeneration efficiency. Through five continual generations using the buds-first method, a total of 215 regenerated plants were obtained in the last generation, and eight exhibited a phenotype we named tricussate whorled phyllotaxis (twp). Six of the regenerated twp variant plants maintained their tricussate whorled phyllotaxis phenotype, showing no other abnormalities, while one reverted to a wild type before flowering and another formed two rounds of sepals. Physiological analysis revealed that the twp plants responded differently than wild type to exogenous NAA and 2,3,5-triiodobenzoic acid (TIBA), while high-performance liquid chromatography (HPLC) analysis showed that the levels of endogenous indole-3-acetic acid (IAA) and gibberellin (GA) were lower in twp than wild-type plants. These results suggest that the formation of the twp mutant may be related to phytohormones and that the twp variant could be an important material for investigating the molecular mechanism of plant phyllotaxis patterning.  相似文献   

13.
Field trials were conducted to evaluate the efficacy of wheat bran bait formulations of Paranosema locustae and Metarhizium anisopliae for controlling grasshoppers in southeast Niger. Treatments consisted of wheat bran baits mixed with M. anisopliae, P. locustae + M. anisopliae or with P. locustae spores and P. locustae + sugar. Oedaleus senegalensis, Pyrgomorpha cognata and Acrotylus blondeli were the predominant species at the time of application representing ca. 94% of the total population. Bran application was done when O. senegalensis (ca. 75% of the population) was at its early developmental stages, with first, second and third instars accounting for 64–85%. Grasshopper population reduction, P. locustae prevalence and level of infections in the predominant species were monitored. Manual application of P. locustae and M. anisopliae formulated in wheat bran has proven to induce consistent pathogen infection in grasshopper populations. Population density over the three weeks monitoring, typically decreased by 44.7 ± 6.9%, 52.8 ± 8.4%, 73.7 ± 5.5% and 89.1 ± 1.8% in P. locustae, P. locustae + sugar, M. anisopliae and P. locustae + M. anisopliae treated plots respectively. Paranosema locustae prevalence in surviving adult grasshoppers at 28 after application was 48.1 ± 2.3%, 28.9 ± 4.8% and 27.4 ± 3.7%, with infection level of 6.2 ± 0.8 × 106, 2.3 ± 0.3 × 104 and 2.1 ± 0.3 × 103 spores mg−1 host weight in O. senegalensis, A blondeli and P. cognate respectively. Other species that each accounted for <2% of the community, namely Aiolopus thalassinus, A. simulatrix, Acorypha glaucopsis, Acrotylus patruelis, Anacridium melanorhodon, Diabolocatantops axillaris, Kraussaria angulifera and Schistocerca gregaria were found to show sign of infection. The results from this study suggest that wheat bran application of M. anisopliae and P. locustae alone or in combination, targeting early instars grasshopper could be a valuable option in grasshopper control programs.  相似文献   

14.
Allophycocyanin (APC) is a minor component of phycobiliproteins in cyanobacteria and red algae. This paper describes a simple and inexpensive extracting method for isolating APC from Spirulina (Arthrospira) platensis with high efficiency. The crude phycobiliprotein extract was pretreated by ammonium sulfate fractionation. Then, by adding hydroxylapatite into crude phycobiliprotein extract dissolved in 20 mM phosphate buffer (pH 7.0), APC was selectively adsorbed by hydroxylapatite but C-phycocyanin (C-PC) was not. The hydroxylapatite was collected and APC was extracted from the crude phycobiliprotein extract. Then, the enriched APC was washed off from the hydroxylapatite using 100 mM phosphate buffer (pH 7.0). In this simple extracting method it was easy to remove C-PC and isolate APC in large amounts. The absorbance ratio A 650/A 280 of extracted APC reached 2.0. The recovery yield was 70%, representing 4.61 mg · g−1 wet weight. The extracted APC could be further purified by a simple anion-exchange chromatography with a pH gradient from 5.6 to 4.0. The absorbance ratio A 650/A 280 of the purified APC reached 5.0, and the overall recovery yield was 43%, representing 2.83 mg · g−1 wet weight. Its purity was confirmed by native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate-PAGE.  相似文献   

15.
Lu L  Sheng H  Li H  Gan W  Liu C  Zhu J  Loos RJ  Lin X 《Human genetics》2012,131(3):505-512
Recent studies have identified common variants in or near GC, CYP2R1 and NADSYN1/DHCR7 to be associated with 25-hydroxyvitamin D [25(OH)D] levels in European populations. We aimed to examine whether these variants also influence 25(OH)D levels in Chinese. Seven common variants were successfully genotyped and tested for associations with plasma 25(OH)D levels in a population-based cohort of 3,210 Chinese Hans from Beijing and Shanghai. Six common variants at GC (rs4588, rs7041, rs2282679 and rs1155563) and NADSYN1/DHCR7 (rs3829251 and rs1790349) loci were all significantly associated with lower plasma 25(OH)D levels (−0.036 ≤ β ≤ −0.076 per risk-allele, P ≤ 5.7 × 10−5), while CYP2R1-rs2060793 showed a trend toward association with 25(OH)D levels in the Shanghai subpopulation (P = 0.08), but not in the Beijing subpopulation (P = 0.82). Haplotype-based association analyses of the four GC variants showed that only the haplotype that contained all risk-alleles (TACC) was significantly associated with lower plasma 25(OH)D levels (β = −0.085, P = 2.3 × 10−9), while the haplotype containing the risk-alleles of rs4588 and rs2282679 (TATC) was marginally associated with lower 25(OH)D levels (β = −0.054, P = 0.0562) when compared with GCTA haplotype carrying the four protective alleles. Most notably, conditional analyses showed that only GC-rs4588 and GC-rs2282679 (r 2 = 0.97) remained significantly associated with 25(OH)D concentrations (P ≤ 1.9 × 10−5) after adjusting for the other two SNPs in GC. In conclusion, GC and NADSYN1/DHCR7 loci individually and collectively contribute to variation in plasma vitamin D levels in Chinese Hans.  相似文献   

16.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

17.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na+ and Cl in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO2 assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F′v/F′m) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na+ and/or Cl observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.  相似文献   

18.
The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO4). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42–68% for five cycles).  相似文献   

19.
Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner (0.5–2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33–86%) and biofilm formation (33–88%), total protease (20–65%), LasA protease (59–68%), LasB elastase (36–68%), pyocyanin (17–86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751).  相似文献   

20.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号