首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Escherichia coli NhaA antiporter couples the transport of H(+) and Na(+) (or Li(+)) ions to maintain the proper pH range and Na(+) concentration in cells. A crystal structure of NhaA, solved at pH 4, comprises 12 transmembrane helices (TMs), arranged in two domains, with a large cytoplasm-facing funnel and a smaller periplasm-facing funnel. NhaA undergoes conformational changes, e.g. after pH elevation to alkaline ranges, and we used two computational approaches to explore them. On the basis of pseudo-symmetric features of the crystal structure, we predicted the structural architecture of an alternate, periplasm-facing state. In contrast to the crystal structure, the model presents a closed cytoplasmic funnel, and a periplasmic funnel of greater volume. To examine the transporter functional direction of motion, we conducted elastic network analysis of the crystal structure and detected two main normal modes of motion. Notably, both analyses predicted similar trends of conformational changes, consisting of an overall rotational motion of the two domains around a putative symmetry axis at the funnel centers, perpendicular to the membrane plane. This motion, along with conformational changes within specific helices, resulted in closure at the cytoplasmic end and opening at the periplasmic end. Cross-linking experiments, performed between segments on opposite sides of the cytoplasmic funnel, revealed pH-dependent interactions consistent with the proposed conformational changes. We suggest that the model-structure and predicted motion represent alkaline pH-induced conformational changes, mediated by a cluster of evolutionarily conserved, titratable residues, at the cytoplasmic ends of TMs II, V, and IX.  相似文献   

3.
Viral particles are biological machines that have evolved to package, protect, and deliver the viral genome into the host via regulated conformational changes of virions. We have developed a procedure to modify lysine residues with S-methylthioacetimidate across the pH range from 5.5 to 8.5. Lysine residues that are not completely modified are involved in tertiary or quaternary structural interactions, and their extent of modification can be quantified as a function of pH. This procedure was applied to the pH-dependent structural transitions of brome mosaic virus (BMV). As the reaction pH increases from 5.5 to 8.5, the average number of modified lysine residues in the BMV capsid protein increases from 6 to 12, correlating well with the known pH-dependent swelling behavior of BMV virions. The extent of reaction of each of the capsid protein's lysine residues has been quantified at eight pH values using coupled liquid chromatography-tandem mass spectrometry. Each lysine can be assigned to one of three structural classes identified by inspection of the BMV virion crystal structure. Several lysine residues display reactivity that indicates their involvement in dynamic interactions that are not obvious in the crystal structure. The influence of several capsid protein mutants on the pH-dependent structural transition of BMV has also been investigated. Mutant H75Q exhibits an altered swelling transition accompanying solution pH increases. The H75Q capsids show increased reactivity at lysine residues 64 and 130, residues distal from the dimer interface occupied by H75, across the entire pH range.  相似文献   

4.
Lys48-linked polyubiquitin chains serve as a signal for protein degradation by 26S proteasomes through its Ile44 hydrophobic patches interactions. The individual ubiquitin units of each chain are conjugated through an isopeptide bond between Lys48 and the C-terminal Gly76 of the preceding units. The conformation of Lys48-linked tetraubiquitin has been shown to change dynamically depending on solution pH. Here we enzymatically synthesized a wild-type Lys48-linked tetraubiquitin for structural study. In the synthesis, cyclic and non-cyclic species were obtained as major and minor fractions, respectively. This enabled us to solve the crystal structure of tetraubiquitin exclusively with native Lys48-linkages at 1.85 Å resolution in low pH 4.6. The crystallographic data clearly showed that the C-terminus of the first ubiquitin is conjugated to the Lys48 residue of the fourth ubiquitin. The overall structure is quite similar to the closed form of engineered tetraubiquitin at near-neutral pH 6.7, previously reported, in which the Ile44 hydrophobic patches face each other. The structure of the second and the third ubiquitin units [Ub(2)-Ub(3)] connected through a native isopeptide bond is significantly different from the conformations of the corresponding linkage of the engineered tetraubiquitins, whereas the structures of Ub(1)-Ub(2) and Ub(3)-Ub(4) isopeptide bonds are almost identical to those of the previously reported structures. From these observations, we suggest that the flexible nature of the isopeptide linkage thus observed contributes to the structural arrangements of ubiquitin chains exemplified by the pH-dependent closed-to-open conformational transition of tetraubiquitin.  相似文献   

5.
One of the small proteins from Helicobacter pylori, acyl carrier protein (ACP), was investigated by NMR. ACP is related to various cellular processes, especially with the biosynthesis of fatty acid. The basic NMR resonance assignment is a prerequisite for the validation of a heterologous protein interaction with ACP in H. pylori. Here, the results of the backbone (1)H, (15)N, and (13)C resonance assignments of the H. pylori ACP are reported using double- and triple-resonance techniques. About 97% of all of the (1)HN, (15)N, (13)CO, (13)Calpha, and (13)Cbeta resonances that cover 76 of the 78 non-proline residues are clarified through sequential- and specific- assignments. In addition, four helical regions were clearly identified on the basis of the resonance assignments.  相似文献   

6.
Phosphopantetheine adenylyltransferase (PPAT) catalyses the penultimate step in coenzyme A biosynthesis in bacteria and is therefore a candidate target for antibacterial drug development. We randomly mutated the residues in the Helicobacter pylori PPAT sequence to identify those that govern protein folding and ligand binding, and we describe the crystal structure of one of these mutants (I4V/N76Y) that contains the mutations I4?→?V and N76?→?Y. Unlike other PPATs, which are homohexamers, I4V/N76Y is a domain-swapped homotetramer. The protomer structure of this mutant is an open conformation in which the 65 C-terminal residues are intertwined with those of a neighbouring protomer. Despite structural differences between wild-type PPAT and IV4/N76Y, they had similar ligand-binding properties. ATP binding to these two proteins was enthalpically driven, whereas that for Escherichia coli PPAT is entropically driven. The structural packing of the subunits may affect the thermal denaturation of wild-type PPAT and I4V/N76Y. Mutations in hinge regions often induce domain swapping, i.e. the spatial exchange of portions of adjacent protomers, but residues 4 and 76 of H. pylori PPAT are not located in or near to the hinge region. However, one or both of these residues is responsible for the large conformational change in the C-terminal region of each protomer. To identify the residue(s) responsible, we constructed the single-site mutant, N76Y, and found a large displacement of α-helix 4, which indicated that its flexibility allowed the domain swap to occur.  相似文献   

7.
The cytoplasmic domain of erythrocyte membrane band 3 (cdb3) serves as a center of membrane organization, interacting with such proteins as ankyrin, protein 4.1, protein 4.2, hemoglobin, several glycolytic enzymes, and a tyrosine kinase, p72syk. cdb3 exists in a reversible, pH-dependent conformational equilibrium characterized by large changes in Stokes radius (11 A) and intrinsic fluorescence (2-fold). Based on the crystallographic structure of the cdb3 dimer, we hypothesized that the above conformational equilibrium might involve the movement of flanking peripheral protein binding domains away from a shared dimerization domain. To test this hypothesis, we have mutated both donor (W105L) and acceptor (D316A) residues of a prominent H bond that bridges the above two domains and have examined the effect on the resulting conformational equilibrium. Analysis of the intrinsic fluorescence, Stokes radius, thermal stability, urea stability, and segmental mobility of these mutants reveals that the above H bond is indeed present in the low pH conformation of cdb3 and broken in a higher pH conformation. The data further reveal that cdb3 exists in three native pH-dependent conformations and that rupture of the aforementioned H bond occurs only during conversion of the low pH conformation to the mid-pH conformation. Conversion of the mid-pH conformation to the high pH conformation would now appear to involve structural changes primarily in the peripheral protein binding domain. Because ankyrin associates avidly with the low pH conformation of cdb3, ankyrin occupancy should strongly influence this structural equilibrium and thereby affect band 3 and perhaps global membrane properties.  相似文献   

8.
Suzuki K  Yamada T  Tanaka T 《Biochemistry》1999,38(6):1751-1756
The macrophage scavenger receptor exhibits a pH-dependent conformational change around the carboxy-terminal half of the alpha-helical coiled coil domain, which has a representative amino acid sequence of a (defgabc)n heptad. We previously demonstrated that a peptide corresponding to this region formed a random coil structure at pH 7 and an alpha-helical coiled coil structure at pH 5 [Suzuki, K., Doi, T., Imanishi, T., Kodama, T., and Tanaka, T. (1997) Biochemistry 36, 15140-15146]. To determine the amino acid responsible for the conformational change, we prepared several peptides in which the acidic amino acids were replaced with neutral amino acids. Analyses of their structures by circular dichroism and sedimentation equilibrium gave the result that the presence of Glu242 at the d position was sufficient to induce the pH-dependent conformational change of the alpha-helical coiled coil domain. Furthermore, we substituted a Glu residue for the Ile residue at the d or a position of a de novo designed peptide (IEKKIEA)4, which forms a highly stable triple-stranded coiled coil. These peptides exhibited a pH-dependent conformational change similar to that of the scavenger receptor. Therefore, we conclude that a buried Glu residue in the hydrophobic core of a triple-stranded coiled coil has the potential to induce the pH-dependent conformational change. This finding makes it possible to elucidate the functions of natural proteins and to create a de novo protein designed to undergo a pH-dependent conformational change.  相似文献   

9.
Acyl carrier protein (ACP) interacts with many different enzymes during the synthesis of fatty acids, phospholipids, and other specialized products in bacteria. To examine the structural and functional roles of amino acids previously implicated in interactions between the ACP polypeptide and fatty acids attached to the phosphopantetheine prosthetic group, recombinant Vibrio harveyi ACP and mutant derivatives of conserved residues Phe-50, Ile-54, Ala-59, and Tyr-71 were prepared from glutathione S-transferase fusion proteins. Circular dichroism revealed that, unlike Escherichia coli ACP, V. harveyi-derived ACPs are unfolded at neutral pH in the absence of divalent cations; all except F50A and I54A recovered native conformation upon addition of MgCl(2). Mutant I54A was not processed to the holo form by ACP synthase. Some mutations significantly decreased catalytic efficiency of ACP fatty acylation by V. harveyi acyl-ACP synthetase relative to recombinant ACP, e.g. F50A (4%), I54L (20%), and I54V (31%), whereas others (V12G, Y71A, and A59G) had less effect. By contrast, all myristoylated ACPs examined were effective substrates for the luminescence-specific V. harveyi myristoyl-ACP thioesterase. Conformationally sensitive gel electrophoresis at pH 9 indicated that fatty acid attachment stabilizes mutant ACPs in a chain length-dependent manner, although stabilization was decreased for mutants F50A and A59G. Our results indicate that (i) residues Ile-54 and Phe-50 are important in maintaining native ACP conformation, (ii) residue Ala-59 may be directly involved in stabilization of ACP structure by acyl chain binding, and (iii) acyl-ACP synthetase requires native ACP conformation and involves interaction with fatty acid binding pocket residues, whereas myristoyl-ACP thioesterase is insensitive to acyl donor structure.  相似文献   

10.
AMP transforms fructose-1,6-bisphosphatase from its active R-state to its inactive T-state; however, the mechanism of that transformation is poorly understood. The mutation of Ala(54) to leucine destabilizes the T-state of fructose-1,6-bisphosphatase. The mutant enzyme retains wild-type levels of activity, but the concentration of AMP that causes 50% inhibition increases 50-fold. In the absence of AMP, the Leu(54) enzyme adopts an R-state conformation nearly identical to that of the wild-type enzyme. The mutant enzyme, however, grows in two crystal forms in the presence of saturating AMP. In one form, the AMP-bound tetramer is in a T-like conformation, whereas in the other form, the AMP-bound tetramer is in a R-like conformation. The latter reveals conformational changes in two helices due to the binding of AMP. Helix H1 moves toward the center of the tetramer and displaces Ile(10) from a hydrophobic pocket. The displacement of Ile(10) exposes a hydrophobic surface critical to interactions that stabilize the T-state. Helix H2 moves away from the center of the tetramer, breaking hydrogen bonds with a buried loop (residues 187-195) in an adjacent subunit. The same hydrogen bonds reform but only after the quaternary transition to the T-state. Proposed here is a model that accounts for the quaternary transition and cooperativity in the inhibition of catalysis by AMP.  相似文献   

11.
12.
The transport of hydrophobic insect pheromones through the aqueous medium surrounding their receptors is assisted by pheromone-binding proteins (PBPs). The protein from the silkworm moth Bombyx mori, BmorPBP, exhibits a pH-dependent conformational change postulated to trigger the release of the pheromone bombykol to its receptor. At low pH, an alpha-helix occupies the same binding pocket that houses the pheromone in the BmorPBP-bombykol complex at high pH. We have determined the crystal structure of apo BmorPBP at a resolution of 2.3 angstroms and pH 7.5, which has surprisingly a structure similar to the A-form. These data suggest that BmorPBP undergoes a ligand-dependent conformational change in addition to the previously described pH-dependent conformational change. Analysis of the alpha-helix occupying the binding pocket reveals an amphipathic helix with three acidic residues along one face that are conserved among lepidopteran PBPs and may be involved in a conformational transition of BmorPBP at the receptor membrane.  相似文献   

13.
Conformational flexibility of acyl carrier protein (ACP) is important for its ability to interact with multiple enzymes in bacterial fatty acid metabolism. We have recently shown that, unlike the prototypical ACP from Escherichia coli, the more acidic Vibrio harveyi ACP is largely unfolded at physiological pH. Mutations D18K, A75H and A75H/D18K were made in recombinant V. harveyi ACP (rACP) to determine the importance of basic residues Lys-18 and His-75 in maintaining the native conformation of E. coli ACP. Both D18K and A75H ACPs were fatty acylated by acyl-ACP synthetase, showing that neither mutation grossly alters tertiary structure. Circular dichroism (CD) indicated that rACP refolded upon addition of MgCl(2) at 100-fold lower concentrations (<1 mM) than KCl, suggesting that divalent cations stabilize rACP by interaction at specific sites. Surprisingly, mutants A75H and A75H/D18K exhibited native-like conformation in the absence of MgCl(2), while the D18K mutant was comparable to rACP. Moreover, the alpha-helical content of A75H, A75H/D18K and E. coli ACPs was more sensitive than that of rACP or D18K ACP to modification by the histidine-selective reagent diethylpyrocarbonate. Together, these results suggest that the partial positive charge of His-75 may be important in maintaining the conformational stability of E. coli ACP at a neutral pH.  相似文献   

14.
Fatty acid synthesis in bacteria is catalyzed by a set of individual enzymes collectively known as type II fatty-acid synthase. Each enzyme interacts with acyl carrier protein (ACP), which shuttles the pathway intermediates between the proteins. The type II enzymes do not possess primary sequence similarity that defines a common ACP-binding site, but rather are hypothesized to possess an electropositive/hydrophobic surface feature that interacts with the electronegative/hydrophobic residues along helix alpha2 of ACP (Zhang, Y.-M., Marrakchi, H., White, S. W., and Rock, C. O. (2003) J. Lipid Res. 44, 1-10). We tested this hypothesis by mutating two surface residues, Arg-129 and Arg-172, located in a hydrophobic patch adjacent to the active site entrance on beta-ketoacyl-ACP reductase (FabG). Enzymatic analysis showed that the mutant enzymes were compromised in their ability to utilize ACP thioester substrates but were fully active in assays with a substrate analog. Direct binding assays and competitive inhibition experiments showed that the FabG mutant proteins had reduced affinities for ACP. Chemical shift perturbation protein NMR experiments showed that FabG-ACP interactions occurred along the length of ACP helix alpha2 and extended into the adjacent loop-2 region to involve Ile-54. These data confirm a role for the highly conserved electronegative/hydrophobic residues along ACP helix alpha2 in recognizing a constellation of Arg residues embedded in a hydrophobic patch on the surface of its partner enzymes, and reveal a role for the loop-2 region in the conformational change associated with ACP binding. The specific FabG-ACP interactions involve the most conserved ACP residues, which accounts for the ability of ACPs and the type II proteins from different species to function interchangeably.  相似文献   

15.
The solution structure of neuropeptide F (NPF), from the flatworm (platyhelminthes) Moniezia expansa, has been determined by (1)H NMR spectroscopy at 800 MHz in 60%/40% CD(3)OH/H(2)O. NPF is the most abundant neuropeptide in platyhelminthes. The secondary structure of NPF contains an alpha helix from residues Lys(14) to Ile(31), while the N terminus, consisting of residues Pro(-2) to Asn(13), and the C-terminus, consisting of residues Gly(32) to Phe(36), are in a random conformation. The structure was calculated by a simulated annealing protocol, and the conformational data are compared to the porcine neuropeptide Y (NPY), a peptide hormone and neurotransmitter. The exact function of NPF is unknown, but structural similarity with porcine NPY indicates that its mode of action is similar. These structural data can serve as a starting point in the design of new antiparasitic drugs.  相似文献   

16.
Im7 folds via an on‐pathway intermediate that contains three of the four native α‐helices. The missing helix, helix III, is the shortest and its failure to be formed until late in the pathway is related to frustration in the structure. Im7H3M3, a 94‐residue variant of the 87‐residue Im7 in which helix III is the longest of the four native helices, also folds via an intermediate. To investigate the structural basis for this we calculated the frustration in the structure of Im7H3M3 and used NMR to investigate its dynamics. We found that the native state of Im7H3M3 is highly frustrated and in equilibrium with an intermediate state that lacks helix III, similar to Im7. Model‐free analysis identified residues with chemical exchange contributions to their relaxation that aligned with the residues predicted to have highly frustrated interactions, also like Im7. Finally, we determined properties of urea‐denatured Im7H3M3 and identified four clusters of interacting residues that corresponded to the α‐helices of the native protein. In Im7 the cluster sizes were related to the lengths of the α‐helices with cluster III being the smallest but in Im7H3M3 cluster III was also the smallest, despite this region forming the longest helix in the native state. These results suggest that the conformational properties of the urea‐denatured states promote formation of a three‐helix intermediate in which the residues that form helix III remain non‐helical. Thus it appears that features of the native structure are formed early in folding linked to collapse of the unfolded state.  相似文献   

17.
The structure of the trigonal crystal form of bovine beta-lactoglobulin variant B at pH 7.1 has been determined by X-ray diffraction methods at a resolution of 2.22 A and refined to values for R and Rfree of 0.239 and 0.286, respectively. By comparison with the structure of the trigonal crystal form of bovine beta-lactoglobulin variant A at pH 7.1, which was determined previously [Qin BY et al., 1998, Biochemistry 37:14014-14023], the structural consequences of the sequence differences D64G and V118A of variants A and B, respectively, have been investigated. Only minor differences in the core calyx structure occur. In the vicinity of the mutation site D64G on loop CD (residues 61-67), there are small changes in main-chain conformation, whereas the substitution V118A on beta-strand H is unaccompanied by changes in the surrounding structure, thereby creating a void volume and weakened hydrophobic interactions with a consequent loss of thermal stability relative to variant A. A conformational difference is found for the loop EF, implicated in the pH-dependent conformational change known as the Tanford transition, but it is not clear whether this reflects differences intrinsic to the variants in solution or differences in crystallization.  相似文献   

18.
Kozachkov L  Herz K  Padan E 《Biochemistry》2007,46(9):2419-2430
The 3D structure of Escherichia coli NhaA, determined at pH 4, provided the first structural insights into the mechanism of antiport and pH regulation of a Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 7.0-8.5), many questions pertaining to the active state of NhaA have remained open, including the physiological role of helix X. Using a structural-based evolutionary approach in silico, we identified a segment of most conserved residues in the middle of helix X. These residues were then used as targets for functional studies at physiological pH. Cysteine-scanning mutagenesis showed that Gly303, in the middle of the conserved segment, is an essential residue and Cys replacement of Lys300 retains only Li+/H+ antiporter activity, with a 20-fold increase in the apparent KM for Li+. Cys replacements of Leu296 and Gly299 increase the apparent KM of the Na+/H+ antiporter for both Na+ and Li+. Accessibility test to N-ethylmaleimide and 2-sulfonatoethyl methanethiosulfonate showed that G299C, K300C, and G303C are accessible to the cytoplasm. Suppressor mutations and site-directed chemical cross-linking identified a functional and/or structural interaction between helix X (G295C) and helix IVp (A130C). While these results were in accordance with the acid-locked crystal structure, surprisingly, conflicting data were also obtained; E78C of helix II cross-links very efficiently with several Cys replacements of helix X, and E78K/K300E is a suppressor mutation of K300E. These results reveal that, at alkaline pH, the distance between the conserved center of helix X and E78 of helix II is drastically decreased, implying a pH-induced conformational change of one or both helices.  相似文献   

19.
We previously showed that bovine apolipoprotein A-II (apoA-II) has antimicrobial activity against Escherichia coli in PBS, and its C-terminal residues 49-76 are responsible for the activity using synthetic peptides. In order to understand the structural requirements of peptide 49-76 for the antimicrobial activity, the N- or C-terminus was truncated and then the charged (Lys or Asp) or Ser residues were replaced by Ala. Deletion of the first or last three amino acids and replacement of Lys-54/55 or 71/72 by Ala caused a substantial decreases in alpha-helical content in 50% TFE, showing the possible presence of helices in N- and C-terminal regions, respectively. The anti-Escherichia coli activity of the peptide correlated with its liposome-binding activity. Replacement of Lys-54/55 or 71/72 by Ala resulted in an almost complete loss of anti-E. coli activity with a substantial decrease in liposome-binding activity. Moreover, deletion of the last three amino acids caused a reduction to 1/17 of the original anti-E. coli activity with a moderate decrease in liposome-binding activity. In contrast, replacement of Ser-65/66, Asp-59, or Asp-69 by Ala hardly affected the anti-E. coli activity. These findings suggest that Lys-54/55 and Lys-71/72 on the putative helices are critical for antimicrobial activity, and the C-terminal 3 amino acids are important for the structural integrity of the C-terminal region for effective antimicrobial activity.  相似文献   

20.
The molecular chaperone Hsp90 depends upon large conformational rearrangements for its function. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, structural and kinetic studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis shift the equilibrium between a preexisting set of conformational states in an organism-dependent manner. While many conformations of Hsp90 have been described, little is known about how they relate to chaperone function. In this study, we show that the conformational equilibrium of the bacterial Hsp90, HtpG, can be shifted with pH. Using small-angle X-ray scattering, we identify a two-state pH-dependent conformational equilibrium for apo HtpG. Our structural modeling reveals that this equilibrium is observed between the previously observed extended state and a second state that is strikingly similar to the recently solved Grp94 crystal structure. In the presence of nonhydrolyzable 5′-adenylyl-β,γ-imidodiphosphate, a third state, which is identical with the solved AMPPNP-bound structure from yeast Hsp90, is populated. Electron microscopy confirmed the observed conformational equilibria. We also identify key histidine residues that control this pH-dependent equilibrium; using mutagenesis, we successfully modulate the conformational equilibrium at neutral pH. Using these mutations, we show that the Grp94-like state provides stronger aggregation protection compared to the extended apo conformation in the context of a citrate synthase aggregation assay. These studies provide a more detailed view of HtpG's conformational dynamics and provide the first linkage between a specific conformation and chaperone function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号