首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK γ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region ( ter ) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif , located within ter . The frequency of chromosome dimer formation is ∼15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of ∼70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre– loxP recombination replaces XerCD– dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter .  相似文献   

2.
Newly replicated duplex DNA minicircles of trypanosomal kinetoplast DNA are nicked in both their monomeric and catenated topological states, whereas mature ones are covalently sealed. The possibility that nicking may play a role during kinetoplast DNA replication by affecting the topological interconversions of monomeric DNA minicircles and catenane networks was studied here in vitro using Crithidia fasciculata DNA topoisomerase. An enzyme that catalyzes the nicking of duplex DNA circles has been purified to apparent homogeneity from C. fasciculata cell extracts. The native enzyme has a sedimentation coefficient of 6.8 S and was found to be a dimer with a protomer Mr = 60,000. Nicking of kinetoplast DNA networks by the purified enzyme inhibits their decatenation by the Crithidia DNA topoisomerase but has no effect on the catenation of monomeric DNA minicircles into networks. This differential effect on decatenation versus catenation is specific to the purified nicking enzyme. Random nicking of interlocked DNA minicircles has no detectable effect on the reversibility of the topological reaction. The potential role of Crithidia nicking enzyme in the replication of kinetoplast DNA networks in trypanosomatids is discussed.  相似文献   

3.
4.
Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKγ regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.  相似文献   

5.
Aussel L  Barre FX  Aroyo M  Stasiak A  Stasiak AZ  Sherratt D 《Cell》2002,108(2):195-205
FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.  相似文献   

6.
Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.  相似文献   

7.
Tian DQ  Wang YM  Zheng T 《遗传》2012,34(8):1003-1008
大约10%~15%的大肠杆菌在染色体复制过程中会形成染色体二聚体。大肠杆菌染色体编码的重组酶XerC和XerD作用于染色体复制终点区的dif序列,以同源重组的方式将染色体二聚体解离为单体,使细菌得以正常复制分裂。编码霍乱毒素的噬菌体CTXΦ以位点特异的方式整合入霍乱弧菌染色体,但其基因组中不含有任何重组酶基因,其整合过程需要细菌染色体编码的XerC和XerD重组酶,且整合位点与大肠杆菌dif序列相似。XerCD重组酶基因和dif位点在细菌染色体广泛存在,表明其可能是染色体二聚体解离,噬菌体及其他外源基因成分整合入染色体过程中一种广泛存在的途径。文章对XerCD/dif位点特异性重组在细菌染色体二聚体解离、外源基因整合的研究进展进行综述。  相似文献   

8.
Recombination-dependent replication is an essential housekeeping function in prokaryotes and eukaryotes, serving, for example, to restart DNA replication after the repair of a double-strand break. Little is known about the interplay between the recombination and replication machinery when recombination intermediates are used as substrates for DNA replication. We show here that recombination intermediates formed between linear duplex and supercoiled plasmid DNAs are substrates for a generalized strand displacement DNA synthesis reaction in which the 3'-OH of the invading strand in the recombination intermediate is used as a primer. DNA synthesis is driven by negative superhelicity and is inhibited if disassembly of the RecA filament is prevented. Thus, assembly and disassembly of RecA filaments in the same direction facilitates filament clearance from the 3'-end of the invading strand, allowing DNA synthesis to occur from recombination intermediates.  相似文献   

9.
The FtsK translocase pumps dsDNA directionally at ~5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.  相似文献   

10.
FtsK is a DNA translocase that coordinates chromosome segregation and cell division in bacteria. In addition to its role as activator of XerCD site-specific recombination, FtsK can translocate double-stranded DNA (dsDNA) rapidly and directionally and reverse direction. We present crystal structures of the FtsK motor domain monomer, showing that it has a RecA-like core, the FtsK hexamer, and also showing that it is a ring with a large central annulus and a dodecamer consisting of two hexamers, head to head. Electron microscopy (EM) demonstrates the DNA-dependent existence of hexamers in solution and shows that duplex DNA passes through the middle of each ring. Comparison of FtsK monomer structures from two different crystal forms highlights a conformational change that we propose is the structural basis for a rotary inchworm mechanism of DNA translocation.  相似文献   

11.
DNA topoisomerase activity detected in cell extracts of the trypanosomatid Crithidia fasciculata interlocks kinetoplast DNA duplex minicircles into huge catenane forms resembling the natural kinetoplast DNA networks found in trypanosomes. Catenation of duplex DNA circles is reversible and equilibrium is affected by ionic strength, and by spermidine. The reaction requires magnesium, is ATP dependent and is inhibited by high concentrations of novobiocin. Extensive homology between duplex DNA rings was not required for catenane formation since DNA circles with unrelated sequences could be interlocked into mixed network forms. Covalently sealed catenaned DNA circles are specifically used as substrates for decatenation. No such preference for covalently sealed duplex DNA rings was observed for catenate formation. Its catalytic properties and DNA substrate preference, suggest a potential role for this eukaryotic topoisomerase activity in the replication of kinetoplast DNA.  相似文献   

12.
Xu L  Marians KJ 《Molecular cell》2003,11(3):817-826
We report the reconstitution of the initial steps of the double-strand break-repair pathway where joint molecule formation between a duplex DNA fragment and a circular template by the combined action of RecA, RecBCD, and the single-stranded DNA binding protein provides the substrate for replication fork formation by the restart primosome and the DNA polymerase III holoenzyme. We show that PriA dictates the pathway of replication from the recombination intermediate by inhibiting a nonspecific, strand displacement DNA synthesis reaction and favoring the formation of a bona fide replication fork. Furthermore, we find that RecO and RecR significantly stimulate this recombination-directed DNA replication reaction, and that this stimulation is modulated by the presence of RecF, suggesting that the latter protein may also act as a regulator of the pathway of resolution of the recombination intermediate.  相似文献   

13.
Nucleoprotein architecture and ColE1 dimer resolution: a hypothesis   总被引:6,自引:1,他引:5  
Dimers of plasmid ColE1 are converted to monomers by site-specific recombination, a process that requires 240 bp of DNA ( cer ) and four host-encoded proteins (XerC, XerD, ArgR and PepA). Here, we propose structures for nucleoprotein complexes involved in cer –Xer recombination based upon existing knowledge of the structures of component proteins and computational analyses of protein structure and DNA curvature. We propose that, in the nucleoprotein complex at a single cer site, a PepA hexamer acts as an adaptor, connecting the heterodimeric recombinase (XerCD) to an ArgR hexamer. This provides a protein core around which the cer site wraps, its exact path being defined by strong sequence-specific interactions with ArgR and XerCD, weak interactions with PepA and sequence-dependent flexibility of cer . The initial association of single-site complexes (pairing) is proposed to occur via an ArgR–PepA interaction. Pairing between sites in a plasmid dimer is stabilized by DNA supercoiling and is followed by a structural isomerization to form a recombination-proficient synaptic complex. We propose that paired structures formed between sites in trans are too short-lived to permit synaptic complex formation. There is thus an energetic barrier to inappropriate recombination reactions. Our proposals are consistent with a wide range of experimental observations.  相似文献   

14.

Background

The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV.

Methodology

We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a ∼400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPS-recognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions.

Significance

Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last steps of chromosome segregation and to their coupling with cell division by FtsK.  相似文献   

15.
The reconstituted pBR322 DNA replication system has been used to identify a mechanism for the processing and segregation of daughter DNA molecules by Escherichia coli topoisomerase I (Topo I) during the terminal stages of DNA replication. At low concentrations of Topo I (sufficient to confer specificity to the replication system for DNA templates containing a ColE1-type origin of DNA replication), the major products of the replication reaction were: multigenome-length, linear, double-stranded DNA molecules (an aberrant product); multiply interlinked, catenated, supercoiled DNA dimers; and a last Cairns-type replication intermediate. Thirty- to fifty-fold higher concentrations of Topo I led to the appearance of form II and form I pBR322 DNA as the only synthetic products. A model was developed in which Topo I, bound to a single-stranded gap on the parental H strand DNA just upstream of the origin of DNA replication, catalyzed the decatenation of the intermolecular linkages between the two daughter DNA molecules that were generated by primosome-catalyzed unwinding of the residual nonreplicated parental duplex DNA in the last Cairns-type intermediate. At low concentrations of Topo I, however, the intermolecular linkages persisted and, within the context of this replication system, were not removed by DNA gyrase. In support of this model it was demonstrated that: there was a single-stranded gap between the nonreplicated parental duplex region and the 5' end of the nascent leading-strand DNA; the number of intermolecular linkages in the catenated supercoiled DNA dimers was inversely related to the concentration of Topo I; the supercoiled DNA dimers did not serve as a precursor of the final form I DNA product; and maturation of the last Cairns-type replication intermediate to form I DNA was not affected by the presence of coumermycin, a potent inhibitor of the activities of DNA gyrase.  相似文献   

16.
I have found that antineoplastic drugs which are known to be inhibitors of mammalian DNA topoisomerases have pronounced and selective effects on simian virus 40 DNA replication. Ellipticine, 4'-(9-acridinylamino)methanesulfon-m-aniside, and Adriamycin blocked decatenation of newly replicated simian virus 40 daughter chromosomes in vivo. The arrested decatenation intermediates produced by these drugs contained single-strand DNA breaks. Ellipticine in particular produced these catenated dimers rapidly and efficiently. Removal of the drug resulted in rapid reversal of the block and completion of decatenation. The demonstration that these drugs interfere with decatenation suggests that they may exert their cytotoxic and antineoplastic effects by preventing the separation of newly replicated cellular chromosomes. Camptothecin rapidly breaks replication forks in growing Cairns structures. It is likely that the target of camptothecin is the "swivel" topoisomerase required for DNA replication and that it is located at or very near the replication fork in vivo. Evidence is presented that many of the broken Cairns structures are in fact half-completed sister chromatid exchanges. One pathway for the resolution of these structures is completion of the sister chromatid exchange to produce a circular head-to-tail dimer.  相似文献   

17.
The tyrosine family site-specific recombinases, XerCD, function in the conversion of circular dimer replicons to monomers. In the recombining complex that contains two synapsed recombination sites and two molecules each of XerC and XerD, the DNA strand-exchange reactions are separated in time and space. XerC initiates recombination to form a Holliday junction intermediate, which undergoes a conformational change to provide a substrate for strand exchange by XerD. XerCD are two-domain proteins, whose C-terminal domains contain all of the catalytic residues. We show that XerC or XerD variants lacking their N-terminal domains are active in recombination when combined with their wild-type partner. Nevertheless, the normal pattern of catalysis is dramatically altered; strand exchange by the recombinase variant is stimulated, while that by the wild-type partner recombinase is impaired. The primary determinants for the mutant phenotype reside in the region of alpha-helix B of XerD. We propose that altered interactions within the recombining heterotetramer lead to changes in the relative concentrations of the two alternative Holliday junction substrates that are recombined by XerC or XerD, respectively.  相似文献   

18.
Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/difSL system, include only one recombinase. We investigated the functional effects of this difference by studying the XerS/difSL system. XerS bound and recombined difSL sites in vitro, both activities displaying asymmetric characteristics. Resolution of chromosome dimers by XerS/difSL required translocation by division septum-borne FtsK. The translocase domain of L. lactis FtsK supported recombination by XerCD/dif, just as E. coli FtsK supports recombination by XerS/difSL. Thus, the FtsK-dependent coupling of chromosome segregation with cell division extends to non-rod-shaped bacteria and outside the phylum Proteobacteria. Both the XerCD/dif and XerS/difSL recombination systems require the control activities of the FtsKγ subdomain. However, FtsKγ activates recombination through different mechanisms in these two Xer systems. We show that FtsKγ alone activates XerCD/dif recombination. In contrast, both FtsKγ and the translocation motor are required to activate XerS/difSL recombination. These findings have implications for the mechanisms by which FtsK activates recombination.  相似文献   

19.
The initiation of DNA synthesis on forked DNA templates is a vital process in the replication and maintenance of cellular chromosomes. Two proteins that promote replisome assembly on DNA forks have so far been identified. In phage T4 development the gene 59 protein (gp59) assembles replisomes at D-loops, the sites of homologous strand exchange. Bacterial PriA protein plays an analogous function, most probably restarting replication after replication fork arrest with the aid of homologous recombination proteins, and PriA is also required for phage Mu replication by transposition. Gp59 and PriA exhibit similar DNA fork binding activities, but PriA also has a 3' to 5' helicase activity that can promote duplex opening for replisome assembly. The helicase activity allows PriA's repertoire of templates to be more diverse than that of gp59. It may give PriA the versatility to restart DNA replication without recombination on arrested replication forks that lack appropriate duplex openings.  相似文献   

20.
In an in vitro simian virus 40 (SV40) DNA replication assay, we have observed excision of a hybrid adeno-associated virus (AAV)/SV40 insert from a plasmid construct. The excision was dependent on the presence of the palindromic AAV terminal repeat and greatly enhanced by the addition of the SV40 T antigen to the reaction. Analysis of the excision product supports a model in which the palindromic terminal sequences of AAV form a cruciform structure (equivalent to a Holliday recombination intermediate), which is cleaved and resealed so that the excision products are linear duplex pBR322 and linear duplex AAV/SV40 insert. Both the excised linear duplex pBR322 and the excised linear duplex AAV/SV40 insert have each terminus covalently crosslinked by one copy of the palindromic region of the AAV terminal repeat region folded on itself. The excision process may be a model system for cellular homologous recombination. The process as observed was either concomitant with or subsequent to DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号