首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The presence of subunit V, the iron-sulfur protein, of complex III has been demonstrated in mitochondria from a mutant of Saccharomyces cerevisiae which lacks 5-aminolevulinic acid synthase and, hence, is devoid of heme. The mature form (24 K Da) of the iron-sulfur protein was observed in equal amounts in the heme-deficient and heme-sufficient cells with antiserum against subunit V and either the sensitive immuno-transfer technique or immunoprecipitation from dodecylsulfate-solubilized mitochondria. In addition, a slight shoulder with a molecular mass 1.5 kDa larger than the mature form was present in mitochondria from the heme-deficient cells. Electron paramagnetic resonance spectroscopy revealed the absence of iron-sulfur signals due to clusters S-1, S-2 and S-3 of succinate dehydrogenase or to Rieske's iron-sulfur cluster of complex III in mitochondria from the heme-deficient cells. The lack of iron-sulfur centers in these cells may be a consequence of the absence of sulfite reductase in the cells without heme.  相似文献   

2.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

3.
The presence of cytochrome c oxidase subunits and the association of these subunits with each other was studied in a heme-deficient Saccharomyces cerevisiae mutant. This mutant had been isolated by Gollub et al. (1977) J. Biol. Chem. 252, 2846-2854) and had been shown lack delta-aminolevulinic acid synthetase. When grown in the absence of heme or heme precursors, the mutant is respiration-deficient, devoid of cytochrome absorption bands and auxotrophic for all those components whose biosynthesis is dependent on hemoproteins; when grown in the presence of heme or heme precursors, the mutant is phenotypically wild type. Upon growth of the mutant in the absence of heme synthesis, the mitochondria still contained two of the three mitochondrially made cytochrome c oxidase subunits (i.e. II and III) and at least one of the cytoplasmically made cytochrome c subunits (VI). The other subunits were either barely detectable (I, IV) or undetectable (V, VII). The residual subunits were apparently not assembled with each other since an antiserum directed mainly against Subunit VI failed to co-precipitate Subunits II and III which were still present. In contrast, growth of the mutant in the presence of delta-aminolevulinic acid led to the accumulation of active, fully assembled cytochrome c oxidase in the mitochondria. Heme a (or one of its precursors) thus controls the assembly of cytochrome c oxidase from its individual subunits.  相似文献   

4.
The apoprotein of yeast cytochrome c1 is made outside the mitochondria as a larger precursor which is then processed in at least two steps. In the first step, it is transported across both mitochondrial membranes and converted by a matrix-localized protease to an intermediate form whose molecular weight is between that of the precursor and the mature form. The intermediate form is bound to the outer face of the inner membrane. This first step requires an energized mitochondrial inner membrane, but no heme. In the second step, the intermediate form is converted to the mature cytochrome. This second step requires heme; it is blocked in a heme-deficient mutant or in wild type cells treated with an inhibitor of heme synthesis. Import of cytochrome c1 into mitochondria thus proceeds via two distinct heme-free precursors and at least two maturation steps, one of them dependent on heme.  相似文献   

5.
Complex III isolated from yeast mitochondria catalyzed an antimycin A and Diuron-sensitive coenzyme QH2-cytochrome c reductase activity with a turnover number of 15.7 sec?1 and contained 10 nmoles of cytochrome b and 4.6 nmoles of cytochrome c1 per mg of protein. Electrophoresis in sodium dodecyl sulfate acrylamide gels resolved Complex III into 10 bands with apparent molecular weights of 50,000, 40,000, 30,000, 29,000, 24,000, 17,000, 16,000, 12,000, 8,400, and 5,800. Yeast cells were labeled under nongrowing conditions with (35S)-methionine in the absence or presence of inhibitors of cytoplasmi? or mitochondrial protein synthesis. Labeled Complex III was isolated by immunoprecipitation from detergent-solubilized mitochondria using antiserum raised against the purified complex. Analysis of the immunoprecipitates by polyacrylamide gel electrophoresis revealed that a 30,000-dalton protein, cytochrome b, as well as 16,000-dalton protein were labeled in the presence of cycloheximide, indicating that they are products of mitochondrial protein synthesis. Immunoprecipitates from mitochondria obtained from cells labeled in the presence of chloramphenicol contained a new radioactive peak with a molecular weight of 100,000. In addition, significant decreases in the labeling of the proteins with molecular weights of 50,000, 40,000, 30,000, and 16,000 were observed. When Complex III was isolated by immunoprecipitation from intact spheroplasts after a 5-minute pulse with (35S)-methionine, the 100,000-dalton protein was labeled in the immunoprecipitate whether or not chloramphenicol was present; however, after a 1-hour chase with unlabeled methionine, decreased labeling of the 100,000-dalton protein was observed concomitant with an increased labeling of the 50,000- and 40,000-dalton proteins. These results suggest that a protein with a molecular weight of 100,000 may either be a precursor or a partially assembled form of other proteins of Complex III, most probably the two largest polypeptides.  相似文献   

6.
Allen JW 《The FEBS journal》2011,278(22):4198-4216
In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.  相似文献   

7.
The assembly of cytochrome c oxidase subunits I-III was studied in vitro in isolated rat liver mitochondria pre-labeled with [35S]methionine. Individual subunits were immunoabsorbed with monospecific antibodies. Isolated heme a from rat liver mitochondria, when added to radiolabeled mitochondria, induced assembly of subunit I with subunits II and III. Assembly of these subunits was not observed in mitochondria incubated in the presence of heme b(hemin) or in the absence of heme. Quantitative analysis of immunoabsorbed, radiolabeled subunits suggests that the predominant effect of heme a is on the assembly of subunit I with subunit III.  相似文献   

8.
c-Type cytochromes are located partially or completely in the periplasm of gram-negative bacteria, and the heme prosthetic group is covalently bound to the protein. The cytochrome c maturation (Ccm) multiprotein system is required for transport of heme to the periplasm and its covalent linkage to the peptide. Other cytochromes and hemoglobins contain a noncovalently bound heme and do not require accessory proteins for assembly. Here we show that Bradyrhizobium japonicum cytochrome c550 polypeptide accumulation in Escherichia coli was heme dependent, with very low levels found in heme-deficient cells. However, apoproteins of the periplasmic E. coli cytochrome b562 or the cytosolic Vitreoscilla hemoglobin (Vhb) accumulated independently of the heme status. Mutation of the heme-binding cysteines of cytochrome c550 or the absence of Ccm also resulted in a low apoprotein level. These levels were restored in a degP mutant strain, showing that apocytochrome c550 is degraded by the periplasmic protease DegP. Introduction of the cytochrome c heme-binding motif CXXCH into cytochrome b562 (c-b562) resulted in a c-type cytochrome covalently bound to heme in a Ccm-dependent manner. This variant polypeptide was stable in heme-deficient cells but was degraded by DegP in the absence of Ccm. Furthermore, a Vhb variant containing a periplasmic signal peptide and a CXXCH motif did not form a c-type cytochrome, but accumulation was Ccm dependent nonetheless. The data show that the cytochrome c heme-binding motif is an instability element and that stabilization by Ccm does not require ligation of the heme moiety to the protein.  相似文献   

9.
A strain of yeast lacking the gene for the Rieske iron-sulfur protein (RIP) of the cytochrome b-c1 complex was used to study the assembly of this complex in the mitochondrial membrane. This strain lacks the mRNA for the iron-sulfur protein as evidenced by both Northern hybridization using a probe containing the coding region of the gene plus in vitro translation of total RNA followed by immunoprecipitation with a specific antibody against the iron-sulfur protein. In addition, isolated mitochondria from this strain lacked cytochrome c reductase activity with either succinate or the decyl analog of ubiquinol as substrate. Immunoblotting studies with antiserum against the cytochrome b-c1 complex revealed that mitochondria from the iron-sulfur protein-deficient strain have levels of core protein I, core protein II, and cytochrome c1 equal to those of wild-type mitochondria; however, a decrease in cytochrome b was evident from both immunoblotting and spectral analysis. Moreover, it is evident from the immunoprecipitates of radiolabeled mitochondria that the amounts of the low-molecular-weight subunits (17, 14, and 11 kDa) are decreased 53, 65, and 50%, respectively, in mitochondria lacking the iron-sulfur protein. These results suggest that the iron-sulfur protein is required for the complete assembly of the low-molecular-weight subunits into the cytochrome b-c1 complex.  相似文献   

10.
The effects of heme on the synthesis of subunits V and VII of cytochrome c oxidase were examined in the heme-deficient yeast mutant, GL1. In vitro translation and immunodetection with subunit-specific antisera indicated a 50% decrease in both proteins, with RNA obtained from hemeless cells. Unsupplemented, pulse-labeled cells contained both V and VII polypeptides, but at extremely low levels as compared with those found in delta-aminolevulinic acid-supplemented cells. The data suggest that heme controls the formation of mRNAs for the two subunits, and may also have a regulatory role in translation and in the stability of the polypeptides.  相似文献   

11.
Copper deficiency has been reported to be associated withdecreased cytochrome c oxidase activity, whichin turn may be responsible for theobserved mitochondrial impairment and cardiac failure. We isolatedmito-chondriafrom hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lowerthan incopper-adequate mitochondria. The residual activity paralleled coppercontent of mitochondria and also corresponded with the heme amount associated with cytochromeaa3. In fact, lower absorption in thea-band region of cytochrome aa3 was foundfor copper-deficient rat heart mitochondria. Gel electrophoresisof protein extractedfrom mitochondrial membranes allowed measurements of protein content of thecomplexes ofoxidative phosphorylation, revealing a lower content of complex IV protein incopper-deficientrat heart mitochondria. The alterations caused by copper deficiency appear to bespecific forcytochrome c oxidase. Changes were not observed for F 0 F 1 ATP synthase activity,for heme contents ofcytochrome c and b, and for protein contents of complexes I, III and V.The present study demonstrates that the alteration of cytochrome c oxidase activityobserved in copper deficiency is due to a diminishedcontent of assembled protein and that shortnessof copper impairs heme insertion into cytochrome c oxidase.  相似文献   

12.
c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.  相似文献   

13.
Association of ferrochelatase with Complex I in bovine heart mitochondria   总被引:1,自引:0,他引:1  
The location of ferrochelatase in bovine heart mitochondria has been studied. When the mitochondria were fractionated into Complexes I, II and III, ferrochelatase activity was only found in Complex I. Complex I also showed heme synthesis from ferric ion in the presence of NADH as an electron donor. Immunoblot experiments confirmed the presence of ferrochelatase in Complex I, but not in Complexes II or III. Some phospholipids, including phosphatidylserine and cardiolipin, stimulated NADH-dependent heme synthesis from ferric ion. When purified ferrochelatase was incubated with the low molecular weight form of NADH dehydrogenase prepared from Complex I, heme synthesis from ferric ion occurred by the addition of NADH. FMN markedly elevated the synthesis. These results indicate that ferrous ion is produced by NADH oxidation in Complex I and is then utilized for heme synthesis by ferrochelatase.  相似文献   

14.
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

15.
Heme is covalently attached to cytochrome c by the enzyme cytochrome c heme lyase. To test whether heme attachment is required for import of cytochrome c into mitochondria in vivo, antibodies to cytochrome c have been used to assay the distributions of apo- and holocytochromes c in the cytoplasm and mitochondria from various strains of the yeast Saccharomyces cerevisiae. Strains lacking heme lyase accumulate apocytochrome c in the cytoplasm. Similar cytoplasmic accumulation is observed for an altered apocytochrome c in which serine residues were substituted for the two cysteine residues that normally serve as sites of heme attachment, even in the presence of normal levels of heme lyase. However, detectable amounts of this altered apocytochrome c are also found inside mitochondria. The level of internalized altered apocytochrome c is decreased in a strain that completely lacks heme lyase and is greatly increased in a strain that overexpresses heme lyase. Antibodies recognizing heme lyase were used to demonstrate that the enzyme is found on the outer surface of the inner mitochondrial membrane and is not enriched at sites of contact between the inner and outer mitochondrial membranes. These results suggest that apocytochrome c is transported across the outer mitochondrial membrane by a freely reversible process, binds to heme lyase in the intermembrane space, and is then trapped inside mitochondria by an irreversible conversion to holocytochrome c accompanied by folding to the native conformation. Altered apocytochrome c lacking the ability to have heme covalently attached accumulates in mitochondria only to the extent that it remains bound to heme lyase.  相似文献   

16.
Biogenesis of c-type cytochromes requires the covalent attachment of heme to the apoprotein. In Escherichia coli, this process involves eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE binds heme covalently and transfers it to apocytochromes c in the presence of other Ccm proteins. CcmC is necessary and sufficient to incorporate heme into CcmE. Here, we report that the CcmC protein directly interacts with heme. We further show that CcmC co-immunoprecipitates with CcmE. CcmC contains two conserved histidines and a signature sequence, the so-called tryptophan-rich motif, which is the only element common to cytochrome c maturation proteins of bacteria, archae, plant mitochondria, and chloroplasts. We report that mutational changes of these motifs affecting the function of CcmC in cytochrome c maturation do not influence heme binding of CcmC. However, the mutants are defective in the CcmC-CcmE interaction, suggesting that these motifs are involved in the formation of a CcmC-CcmE complex. We propose that CcmC, CcmE, and heme interact directly with each other, establishing a periplasmic heme delivery pathway for cytochrome c maturation.  相似文献   

17.
Artificial cytochromes c have been prepared with Fe(III) and Co(III) tetrasulfonated phthalocyanines in place of heme. Their structure and properties have been investigated by difference spectroscopy, CD, epr, electrophoresis, molecular weight estimation, and potentiometric measurements. The visible absorption spectra show the main peak at 650 nm for the iron compound 685 nm for the cobalt one. It is shown by CD experiments that incorporation of Fe(III)L or Co(III)L into apocytochrome c markedly increases helical content of the protein. Its conformation is, however, significantly altered as compared with the native cytochrome c. The epr and spectroscopic data show that the iron and cobalt phthalocyanine models represent the low spin species with the metal ions in trivalent state. Electrophoresis and molecular weight estimation indicate these complexes to be monomers. Both phthalocyanine complexes have not affinity for additional ligands characteristic for hemoglobin. They react, however, with CO, NO, and CN- when they are reduced with dithionite. Moreover, Co(II)L-apocyt c is able to combine with oxygen suggesting a structural feature in common with the oxygen-carrying heme proteins. Iron(II) complex in the same conditions is oxidized directly to the ferric state. The half-reduction potentials of Fe(III)L-apocyt c and Co(III)L-apocyt c are +374 mV and +320 mV, respectively. These complexes are reduced by cytochrome c and cytochrome c reductase (cytochrome bc1).  相似文献   

18.
The cytochrome bc1 complex has been isolated from rat-liver mitochondria by two different procedures. The enzyme isolated by either procedure exhibits a specific cytochrome b and cytochrome c1 heme content of approximately 8 and 4 nmol/mg protein respectively. Both preparations contain only seven polypeptides on sodium dodecylsulfate gel electrophoresis, with the following apparent molecular weights: I, 50000; II, 46000; III, 33000; IV, 25000; V, 12500; VI, 10000; VII, 5600. The polypeptide composition is identical to that of the beef-heart enzyme isolated by cholate/ammonium sulfate fractionation. Furthermore, with the exception of subunit II (core protein 2), the apparent molecular weights of the subunits are identical in the rat-liver and beef-heart enzymes.  相似文献   

19.
Submitochondrial particles isolated from Tetrahymena pyriformis contain essentially the same redox carriers as those present in parental mitochondria: at pH 7.2 and 22 degree C there are two b-type pigments with half-reduction potentials of --0.04 and --0.17 V, a c-type cytochrome with a half reduction potential of 0.215 V, and a two-component cytochrome a2 with Em7.2 of 0.245 and 0.345 V. EPR spectra of the aerobic submitochondrial particles in the absence of substrate show the presence of low spine ferric hemes with g values at 3.4 and 3.0, a high spin ferric heme with g =6, and a g=2.0 signal characteristic of oxidized copper. In the reduced submitochondrial particles signals of various iron-sulfur centers are observed. Cytochrome c553 is lost from mitochondria during preparation of the submitochondrial particles. The partially purified cytochrome c553 is a negatively charged protein at neutral pH with an Em7.2 of 0.25 V which binds to the cytochrome c-depleted Tetrahymena mitochondria in the amount of 0.5 nmol/mg protein with KD of 0.8.10(-6) M. Reduced cytochrome c553 serves as an efficient substrate in the reaction with its own oxidase. The EPR spectrum of the partially purified cytochrome c553 shows the presence of a low spin ferric heme with the dominant resonance signal at g=3.28. A pigment with an alpha absorption maximum at 560 nm can be solubilized from the Tetrahymena cells with butanol. This pigments has a molecular weight of approx. 18 000, and Em7.2 of--0.17 V and exhibits a high spin ferric heme signal at g=6.  相似文献   

20.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号