首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the strategies used by Gram-negative bacteria to secrete proteins across the two membranes which delimit the cells, issec independent and dedicated to proteins lacking an N-terminal signal peptide. It depends on ABC protein-mediated exporters, which consist of three cell envelope proteins: two inner membrane proteins: an ATPase (the ABC protein), a membrane fusion protein (MFP) and an outer membrane polypeptide.Erwinia chrysanthemi metalloproteinases B and C, andSerratia marcescens hemoprotein HasA are secreted by such homologous pathways and interact with the ABC protein. Interaction between the ABC protein and its substrate has also been evidenced by studies on proteinase and HasA hybrid transporters obtained by combining components from each system. Association between hemoprotein HasA and the three exporter/secretion proteins was demonstrated by affinity chromatography on hemin agarose on which the substrate remained bound with the three secretion proteins. The three component association was ordered and substrate binding was required for the formation of this multiprotein complex. Presented at the SymposiumRegulatory Aspects of Bacterial Cell Biology, Prague, October 16–17, 1996.  相似文献   

2.
We previously identified a Serratia marcescens extracellular protein, HasA, able to bind heme and required for iron acquisition from heme and hemoglobin by the bacterium. This novel type of extracellular protein does not have a signal peptide and does not show sequence similarities to other proteins. HasA secretion was reconstituted in Escherichia coli, and we show here that like many proteins lacking a signal peptide, HasA has a C-terminal targeting sequence and is secreted by a specific ATP binding cassette (ABC) transporter consisting of three proteins, one inner membrane protein with a conserved ATP binding domain, called the ABC; a second inner membrane protein; and a third, outer membrane component. Since the three S. marcescens components of the HasA transporter have not yet been identified, the reconstituted HasA secretion system is a hybrid. It consists of the two S. marcescens inner membrane-specific components, HasD and HasE, associated with an outer membrane component coming from another bacterial ABC transporter, such as the E. coli TolC protein, the outer membrane component of the hemolysin transporter, or the Erwinia chrysanthemi PrtF protein, the outer membrane component of the protease transporter. This hybrid transporter was first shown to allow the secretion of the S. marcescens metalloprotease and the E. chrysanthemi metalloproteases B and C. On account of that, the two S. marcescens components HasD and HasE were previously named PrtDSM and PrtESM, respectively. However, HasA is secreted neither by the PrtD-PrtE-PrtF transporter (the genuine E. chrysanthemi protease transporter) nor by the HlyB-HlhD-TolC transporter (the hemolysin transporter). Moreover, HasA, coexpressed in the same cell, strongly inhibits the secretion of proteases B and C by their own transporter, indicating that the E. chrysanthemi transporter recognizes HasA. Since PrtF could replace TolC in the constitution of the HasA transporter, this indicates that the secretion block does not take place at the level of the outer membrane component but rather at an earlier step of interaction between HasA and the inner membrane components.  相似文献   

3.
R Binet  C Wandersman 《The EMBO journal》1995,14(10):2298-2306
The Erwinia chrysanthemi metalloprotease C and the Serratia marcescens haem acquisition protein HasA are both secreted from Gram-negative bacteria by a signal peptide-independent pathway which requires a C-terminal secretion signal and a specific ABC-transporter made up of three proteins: a membrane ATPase (the ABC-protein), a second inner membrane component belonging to the membrane fusion protein family and an outer membrane polypeptide. HasA and protease C transporters are homologous although the secreted polypeptides share no sequence homology. Whereas protease C can use both translocators, HasA is secreted only by its specific transporter. Functional analysis of protease C and HasA secretion through hybrid transporters obtained by combining components from each system demonstrates that the ABC-protein is responsible for the substrate specificity and that inhibition of protease C secretion in the presence of HasA results from a defective interaction between HasA and the ABC-protein. We also show that the outer membrane protein, TolC, can combine with the membrane fusion protein HasE in the presence of either ABC-protein to form a functional transporter but not with the membrane fusion protein, PrtE. This indicates a specific interaction between the outer membrane component and the membrane fusion protein.  相似文献   

4.
The Serratia marcescens haemophore HasA is secreted by an ABC exporter comprising three envelope proteins. The ABC protein (ATP-binding cassette) HasD and the MFP protein (membrane fusion protein) HasE but not the outer membrane component have been isolated previously. In Escherichia coli , TolC, the outer membrane component of the haemolysin transporter, can form a hybrid exporter with HasD and HasE. This hybrid secretes HasA and the very similar metalloproteases from S. marcescens and Erwinia chrysanthemi . By analogy, the genuine exporter was predicted to secrete metalloproteases. The hasF gene was thus cloned from S. marcescens into an E. coli tolC mutant carrying hasD and hasE genes, by screening for a proteolytic phenotype on skimmed-milk plates. hasF encodes a protein sharing 74% identity with the E. coli TolC protein. Anti-TolC antibodies cross-reacted with a protein with an apparent molecular weight of 53 kDa in E. coli expressing hasF and in S. marcescens . hasF is unlinked to the has cluster and, unlike the has operon, is not iron regulated. hasF complements some of the tolC phenotypes, including drug- and detergent sensitivities and haemolysin secretion but not colicin E1 uptake. This suggests that the various functions of TolC could correspond to distinct domains on the protein.  相似文献   

5.
Two ATP-binding cassette (ABC) exporters are present in Pseudomonas fluorescens no. 33; one is the recently reported AprDEF system and the other is HasDEF, which exports a heme acquisition protein, HasA. The hasDEF genes were cloned by DNA hybridization with a DNA probe coding for the LipB protein, one of the components of the Serratia marcescens ABC exporter Lip system. P. fluorescens HasA showed sequence identity of 40 to 49% with HasA proteins from Pseudomonas aeruginosa and Serratia marcescens. The P. fluorescens Has exporter secreted HasA proteins from P. fluorescens and P. aeruginosa but not S. marcescens HasA in Escherichia coli, whereas the Has exporter from S. marcescens allowed secretion of all three HasA proteins. The P. fluorescens HasDEF system also promoted the secretion of the lipase and alkaline protease of P. fluorescens. Hybrid exporter analysis demonstrated that the HasD proteins, which are ABC proteins, are involved in the discrimination of export substrates. Chimeric HasA proteins containing both P. fluorescens and S. marcescens sequences were produced and tested for secretion through the Has exporters. The C-terminal region of HasA was shown to be involved in the secretion specificity of the P. fluorescens Has exporter.  相似文献   

6.
In gram-negative bacteria, type I secretion is carried out by a translocator made up of three proteins that span the cell envelope. One of these proteins is a specific outer membrane protein (OMP) and the other two are cytoplasmic membrane proteins: an ATP-binding cassette (ABC) and the so-called membrane fusion or adaptor protein (MFP). Type I secretion is sec-independent and bypasses the periplasm. This widespread pathway allows the secretion of proteins of diverse sizes and functions via a C-terminal uncleaved secretion signal. This C-terminal secretion signal specifically recognizes the ABC protein, triggering the assembly of the functional trans-envelope complex. This report will mainly deal will recent data concerning the structure and assembly of the secretion complex as well as the effects and role of substrate folding on secretion by this pathway.  相似文献   

7.
The major mechanism by which bacteria acquire free or haemoglobin-bound haem involves direct binding to specific outer membrane receptors. Serratia marcescens also secretes a haem-binding protein, HasA, which functions as a haemophore that catches haem and shuttles it to a cell surface specific outer membrane receptor, HasR. We report the isolation and characterization of hasAp , a gene from Pseudomonas aeruginosa. HasAp is an iron-regulated extracellular haem-binding protein that shares about 50% identity with HasA. HasAp is required for P. aeruginosa utilization of haemoglobin iron. It can replace HasA for HasR-dependent haemoblobin acquisition in a system reconstituted in Escherichia coli. HasAp, like HasA, lacks a signal peptide and is secreted by an ABC transporter. These findings show that haemophore-dependent haem acquisition is not unique to S. marcescens .  相似文献   

8.
HasA is the secreted hemophore of the heme acquisition system (Has) of Serratia marcescens. It is secreted by a specific ABC transporter apparatus composed of three proteins: HasD, an inner membrane ABC protein; HasE, another inner membrane protein; and HasF, a TolC homolog. Except for HasF, the structural genes of the Has system are encoded by an iron-regulated operon. In previous studies, this secretion system has been reconstituted in Escherichia coli, where it requires the presence of the SecB chaperone, the Sec pathway-dedicated chaperone. We cloned and inactivated the secB gene from S. marcescens. We show that S. marcescens SecB is 93% identical to E. coli SecB and complements the secretion defects of a secB mutant of E. coli for both the Sec and ABC pathways of HasA secretion. In S. marcescens, SecB inactivation affects translocation by the Sec pathway and abolishes HasA secretion. This demonstrates that S. marcescens SecB is the genuine chaperone for HasA secretion in S. marcescens. These results also demonstrate that S. marcescens SecB is bifunctional, as it is involved in two separate secretion pathways. We investigated the effects of secB point mutations in the reconstituted HasA secretion pathway by comparing the translocation of a Sec substrate in various mutants. Two different patterns of SecB residue effects were observed, suggesting that SecB functions may differ for the Sec and ABC pathways.  相似文献   

9.
Serratia marcescens ATP-binding cassette (ABC) exporter, the Lip system, secretes lipase (LipA(SM)), metalloproteases, and a cell surface layer protein homologue but not a heme acquisition protein, HasA (HasA(SM)). Secretion of HasA(SM) is limited to the Has(SM) system. However, HasA proteins from Pseudomonas fluorescens (HasA(PF)) and Pseudomonas aeruginosa were exported through the Lip and Has(SM) systems. To investigate the specificity in Lip exporter-mediated secretion, secretion analysis was performed using chimeras containing the HasA(PF) and HasA(SM) sequences. The segment Val-Ala-Leu (designated R1 to R3 sites), which is present close to the C terminus of HasA(PF) but not HasA(SM), was revealed to be involved in the substrate specificity of the Lip exporter. Introduction of amino acid substitutions into the R1-R5 region demonstrated that R1, R3, R4, and R5 sites require some specific amino acid residues for Lip-mediated secretion. The amino acid sequence of the region was conserved considerably among the proteins secreted by the Lip exporter. On the contrary, the region was not related to HasA secretion through the Has(SM) system. Interestingly, a typical C-terminal motif, so far regarded as a secretion signal, was not necessary for secretion through either the Lip or the Has(SM) exporter. In LipA(SM) secretion via the Lip system, the typical C-terminal motif was not essential either, but the presence of a sequence similar to Val-Ala-Leu and its location from the C terminus greatly affect the secretion level. Secretion analyses using hybrid exporters and competitors exhibited that the R1-R5 region was recognized by an ABC protein of the Lip exporter, LipB, and that the mutations aborting Lip-mediated secretion in the region resulted in a loss of the affinity to LipB. Thus, a determinant within the secretory protein for Lip-mediated secretion was fully defined.  相似文献   

10.
The Serratia marcescens hemophore is secreted by a type I secretion system consisting of three proteins: a membrane ABC protein, an adaptor protein, and the TolC-like outer membrane protein. Assembly of these proteins is induced by substrate binding to the ABC protein. Here we show that a hemophore mutant lacking the last 14 C-terminal amino acids is not secreted but rather interacts with the ABC protein and promotes a stable multiprotein complex. Strains expressing the transporter and the mutant protein are sensitive to detergents (sodium dodecyl sulfate [SDS]). TolC is trapped in the transporter jammed by the truncated substrate and therefore is not present at sufficient concentrations to allow the efflux pumps to expel detergents. Using an SDS sensitivity assay, we showed that the hemophore interacts with the ABC protein via two nonoverlapping sites. We also demonstrated that the C-terminal peptide, which functions as an intramolecular signal sequence in the complete substrate, may also have intermolecular activity and triggers complex dissociation in vivo when it is provided as a distinct peptide. The SDS sensitivity test on plates enables workers to study type I secretion protein association and dissociation independent of the secretion process itself.  相似文献   

11.
革兰氏阴性菌血红素载体蛋白Hemophore的结构及作用机制   总被引:1,自引:1,他引:0  
血红素作为宿主体内最丰富的铁离子来源,是致病菌营养竞争的主要目标,尤其对于血红素自身合成途径部分丧失的细菌。革兰氏阴性菌血红素转运系统由血红素载体蛋白(Hemophore)、外膜血红素受体、TonB-ExbB-ExbD复合物、ABC转运体等组成。Hemophore是存在于细菌细胞膜上或分泌到胞外环境中的一种蛋白。它能从宿主血红素结合蛋白中捕获血红素并将其传递给外膜受体。目前,在不同革兰氏阴性菌中已发现3种类型的Hemophore,分别是HasA、HxuA和HmuY型。本文将详细描述这3种Hemophore捕获血红素及与外膜受体相互作用的机制,以期为进一步研究其他细菌血红素载体蛋白的功能及作用机制奠定基础。  相似文献   

12.
Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel — a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

13.
In the Escherichia coli genome, five putative open reading frame (ORF) clusters, mdlAB, ybjYZ, yddA, yojHI, and yhiH, have been assumed to be possible genes for ABC drug efflux transporters (I. T. Paulsen, M. K. Sliwinski, and M. H. Saier, Jr., J. Mol. Biol. 277:573-592, 1998). We cloned all of these ORFs in multicopy plasmids and investigated the drug resistance of drug-supersensitive host cells lacking constitutive multidrug efflux transporter genes acrAB. Among them, only ybjYZ gave significant erythromycin resistance and significantly decreased the accumulation of [(14)C]erythromycin. Therefore, ybjYZ was renamed macAB (macrolide-specific ABC-type efflux carrier). Plasmids carrying both the macA and -B genes conferred resistance against macrolides composed of 14- and 15-membered lactones but no or weak resistance against 16-membered ones. Neither of the two genes produced resistance alone. The DNA sequence suggests that MacB is an integral membrane protein with four transmembrane segments and one nucleotide-binding domain, while MacA belongs to a membrane fusion protein (MFP) family with a signal-like sequence at its N terminus. The expression of the histidine-tagged proteins confirmed that MacB is an integral membrane protein and MacA is a peripheral membrane protein. In addition, MacAB required TolC for its function in a way similar to that of most of the MFP-dependent transporters in E. coli. MacB is thus a novel ABC-type macrolide efflux transporter which functions by cooperating with the MFP MacA and the multifunctional outer membrane channel TolC. This is the first case of an experimentally identified ABC antibiotic efflux transporter in gram-negative organisms.  相似文献   

14.
The secretion pathways of the heme-binding protein HasA from Serratia marcescens and of the metalloproteases A, B, C and G from Erwinia chrysanthemi have been reconstituted in Escherichia coli. They are secreted in a single step from the cytoplasm across both membranes of the Gram-negative envelope, after recognition of their specific C-terminal secretion signal by their cognate ABC transporter. We report strong evidence that both HasA and the metalloproteases bind the SecB chaperone involved in the export of several envelope proteins via the Sec pathway. We also show that the secretion of the HasA protein is strongly dependent upon SecB in the reconstituted system, whereas that of the proteases is not. HasA secretion in the original host is strongly inhibited by a protein known to interfere with E.coli SecB function. We propose that the proteins secreted by the ABC pathway may have to be unfolded for efficient secretion.  相似文献   

15.
Periplasmic membrane fusion proteins (MFPs) are essential components of the type I protein secretion systems and drug efflux pumps in Gram-negative bacteria. Previous studies suggested that MFPs connect the inner and outer membrane components of the transport systems and by this means co-ordinate the transfer of substrates across the two membranes. In this study, we purified and reconstituted the macrolide transporter MacAB from Escherichia coli. Here, MacA is a periplasmic MFP and MacB is an ABC-type transporter. Similar to other MFP-dependent transporters from E. coli, the in vivo function of MacAB requires the outer membrane channel TolC. The purified MacB displayed a basal ATPase activity in detergent micelles. This activity conformed to Michaelis-Menten kinetics but was unresponsive to substrates or accessory proteins. Upon reconstitution into proteoliposomes, the ATPase activity of MacB was strictly dependent on MacA. The catalytic efficiency of MacAB ATPase was more than 45-fold higher than the activity of MacB alone. Both the N- and C-terminal regions of MacA were essential for this activity. MacA stimulated MacB ATPase only in phospholipid bilayers and did not need the presence of macrolides. Our results suggest that MacA is a functional subunit of the MacB transporter.  相似文献   

16.
Secretion of the HasA hemophore is mediated by a C-terminal secretion signal as part of an ATP-binding cassette (ABC) pathway in the Gram-negative bacterium Serratia marcescens. We reconstituted the HasA secretion pathway in Escherichia coli. In E. coli, this pathway required three specific secretion functions and SecB, the general chaperone of the Sec pathway that recognizes HasA. The secretion of the isolated C-terminal secretion signal was not SecB-dependent. We have previously shown that intracellular folded HasA can no longer be secreted, and we proposed a step in the secretion process before the recognition of the secretion signal. Here we show that the secretion of a fully functional HasA variant, lacking the first 10 N-terminal amino acids, was less efficient than that of HasA and was SecB-independent. The N terminus of HasA was required, along with SecB, for the efficient secretion of the whole protein. We have also previously shown that HasA inhibits the secretion of metalloproteases from Erwinia chrysanthemi by their specific ABC transporter. Here we show that this abortive interaction between HasA and the E. chrysanthemi metalloprotease ABC transporter required both SecB and the N terminus of HasA. N-terminal fragments of HasA displayed this abortive interaction in vivo and also interacted specifically in vitro with the ABC protein of the Prt system. SecB also interacted specifically in vitro with the ABC protein of the Prt system. Finally, the HasA variant, lacking the first 10 N-terminal amino acids did not display this abortive interaction with the Prt system. We suggest that the N-terminal domain of HasA specifically recognizes the ABC protein in a SecB-dependent fashion, facilitating functional interaction with the C-terminal secretion signal leading to efficient secretion.  相似文献   

17.
The utilization by Serratia marcescens of heme bound to hemoglobin requires HasA, an extracellular heme-binding protein. This unique heme acquisition system was studied in an Escherichia coli hemA mutant that was a heme auxotroph. We identified a 92-kDa iron-regulated S. marcescens outer membrane protein, HasR, which alone enabled the E. coli hemA mutant to grow on heme or hemoglobin as a porphyrin source. The concomitant secretion of HasA by the HasR-producing hemA mutant greatly facilitates the acquisition of heme from hemoglobin. This is the first report of a synergy between an outer membrane protein and an extracellular heme-binding protein, HasA, acting as a heme carrier, which we termed a hemophore.  相似文献   

18.
The Escherichia coli periplasmic chaperone and peptidyl-prolyl isomerase (PPIase) SurA facilitates the maturation of outer membrane porins. Although the PPIase activity exhibited by one of its two parvulin-like domains is dispensable for this function, the chaperone activity residing in the non-PPIase regions of SurA, a sizable N-terminal domain and a short C-terminal tail, is essential. Unlike most cytoplasmic chaperones SurA is selective for particular substrates and recognizes outer membrane porins synthesized in vitro much more efficiently than other proteins. Thus, SurA may be specialized for the maturation of outer membrane proteins. We have characterized the substrate specificity of SurA based on its natural, biologically relevant substrates by screening cellulose-bound peptide libraries representing outer membrane proteins. We show that two features are critical for peptide binding by SurA: specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins than in other proteins. For the first time this sufficiently explains the capability of SurA to discriminate between outer membrane protein and non-outer membrane protein folding intermediates. Furthermore, peptide binding by SurA requires neither an active PPIase domain nor the presence of proline, indicating that the observed substrate specificity relates to the chaperone function of SurA. Finally, we show that SurA is capable of associating with the outer membrane. Together, our data support a model in which SurA is specialized to interact with non-native periplasmic outer membrane protein folding intermediates and to assist in their maturation from early to late outer membrane-associated steps.  相似文献   

19.
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.  相似文献   

20.
Structural biology of bacterial iron uptake   总被引:3,自引:0,他引:3  
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号