首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Miller DM 《Plant physiology》1987,85(1):164-166
Plants of Zea mays were grown with their roots confined to growing tubes, consisting of cylindrical or spherical glass tubes fitted at the bottom with a stopcock. Nutrient solution was circulated past the roots, and when a plant was 21 to 25 days old, the stopcock was closed, the root excised from the plant and connected to an apparatus which measured root pressure and exudation volume flow rate. The stopcock was opened and solution was again circulated through the growing tube without dropping the level of the liquid bathing the root in the process. Measurements of pressure and flow rate were made continuously during a period in which the solution was replaced, first by draining and refilling the tube in situ, and second by replacing the growing tube with a beaker of solution. Both these manipulations caused at least temporary and frequently permanent drops in root pressure and flow rate. Plants were also grown in cylindrical tubes with a support medium of either glass beads or Raschig rings which filled the growing tubes. It is shown that the solution bathing these roots could be repeatedly replaced by draining and refilling with no visible effect on the measurements. It is recommended, therefore, that in future, support be provided for the roots of all experimental plants grown by solution culture.  相似文献   

2.
A vitamin B12-producing and hydrocarbon-utilizing bacterium, Corynebacterium simplex, accumulated an appreciable amount of cobalt-porphyrin in cultural filtrates when grown on a n-hexadecane medium containing sufficient amounts of cobaltous sulfate and an appropriate detergent. When grown without the detergent, the cobalt-porphyrin was found only in the cells of the organism. In the latter case, the content of cobalt-porphyrin was comparable to that of vitamin B12 and 7 times lower than that of iron-porphyrin. Though the organism required cobaltous sulfate for optimal growth, the requirement could be efficiently replaced by the supplementation of cobalt-porphyrin and partly of vitamin B12. The porphyrin moieties of extra- and intracellular cobalt-porphyrin were identified as coproporphyrin III in both cases.  相似文献   

3.
Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. Mineral nutrients such as phosphate (Pi), sulfate and nitrate have been reported to attenuate Cr(VI) toxicity, but the underlying mechanisms remain to be clarified. Here, we show that chromate activates the expression of low-Pi inducible reporter genes AtPT1 and AtPT2 in Arabidopsis thaliana transgenic seedlings. Primary-root growth was inhibited by 60 % in AtPT2::uidA-expressing seedlings upon exposure to 140-μM Cr(VI). However, increasing the Pi and sulfate supply to the seedlings that were experiencing Cr(VI) toxicity completely and partially restored the root growth, respectively. This effect correlated with the Cr(VI)-induced AtPT2::uidA expression being completely reversed by addition of Pi. To evaluate whether the nutrient supply may affect the endogenous level of Cr in plants grown under toxic Cr(VI) levels, the contents of Cr were measured (by ICP-MS analyses) in seedlings treated with Cr and with or without Pi, sulfate or nitrate. It was found that Cr accumulation increases tenfold in plants treated with 140-μM Cr(VI) without modifying the phosphorus concentration in the plant. In contrast, the supply of Pi specifically decreased the Cr content to levels similar to those found in seedlings grown in medium without chromate. Taken together, these results show that in A. thaliana seedlings the uptake of Cr(VI) is reduced by Pi. Moreover, our data indicate that Pi and sulfate supplements may be useful in strategies for handling Cr-contaminated soils.  相似文献   

4.
The sulfur present in both agricultural and uncultivated soils is largely in the form of sulfonates and sulfate esters and not as free, bioavailable inorganic sulfate. Desulfurization of the former compounds in vitro has previously been studied in Pseudomonas putida, a common rhizosphere inhabitant. Survival of P. putida strains was now investigated in three sulfur-deficient Danish soils which were found to contain 60 to 70% of their sulfur in sulfonate or sulfate ester form, as determined by X-ray near-edge spectroscopy. The soil fitness of P. putida S-313 was compared with that of isogenic strains with mutations in the sftR and asfA genes (required for in vitro desulfurization of sulfate esters and arylsulfonates, respectively) and in the ssu locus (required in vitro for the desulfurization of both sulfonates and sulfate esters). asfA or sftR mutants showed significantly reduced survival compared to the parent strain in bulk soil that had been enriched with carbon and nitrogen to mimic rhizosphere conditions, but this reduced survival was not observed in the absence of these additives. In a tomato rhizosphere grown in compost, survival of sftR and ssu mutants was reduced relative to the parent strain. The results demonstrate that the ability to desulfurize sulfonates and sulfate esters is critical for survival of bacteria in the rhizosphere but less so in bulk soils outside the influence of plant roots, where carbon is the limiting nutrient for growth.  相似文献   

5.
Can plants exposed to SO2 excrete sulfuric acid through the roots?   总被引:2,自引:0,他引:2  
Hydroponically grown pea plants (Pisum sativum L., cv. Kleine Rheinländerin) and barley seedlings (Hordeum vulgare L., cv. Gerbel) were fumigated for several days with 1 or 2 μl l?1 SO2. Both species accumulated sulfate during fumigation, although the nutrient medium lacked sulfate. In pea, SO2-dependent sulfate accumulation in different plant parts accounted for 60 percent of the SO2 sulfur which, as calculated from a determination of boundary and stomatal flux resistances had entered the leaves. Up to 55% of the air-borne sulfate was translocated from pea leaves to roots during the period of fumigation, but no or only little sulfate was excreted into the nutrient solution. In contrast, barley retained sulfate in the leaves, and sulfate translocation from shoot to the root system could not be observed. In both species, protons were excreted by the roots. In fumigated plants, proton loss was higher than in untreated controls in pea, but not in barley. In pea, SO2-dependent proton loss into the medium accounted for up to 50% of the sulfuric acid formed from SO2. Proton excretion was strongly dependent on potassium availability in the nutrient medium. Cation uptake by the plants during fumigation was sufficient to compensate for proton loss, suggesting proton/cation exchange at the interface between root and medium. We conclude that by oxidation to sulfuric acid, plants are capable of detoxifying SO2 taken up by the leaves. Depending on plant species, either both protons and sulfate anions can be exported from the leaves, or the proton load on leaf cells can be relieved by proton/cation exchange at the plasmalemma. Finally, the problem of airborne plant acidification may be solved by proton/cation exchange at the level of roots. The burden of acidification is then shifted from the plant to the nutrient medium. Appreciable amounts of sulfate can be excreted neither by pea nor by barley plants.  相似文献   

6.
Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1,4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism.  相似文献   

7.
The anaerobic sulfate-reducing bacterium Desulfovibrio desulfuricans was grown on medium supplemented with either Kraft lignin or lignosulfonate. Only lignosulfonate contributed to the growth of D. desulfuricans cells, by replacing sulfate, a natural electron acceptor for this microorganism. Kraft lignin added to the culture medium could not substitute for lactate or sulfate, both necessary culture medium components. However, it was found to enhance the viability of D. desulfuricans cells. When changes occurring in lignin during growth of Desulfovibrio cultures were monitored, it was found that both lignin preparations could be partially depolymerized. Spectrophotometric and elemental analysis of biologically treated lignins suggested that both the polyphenolic backbone and lignin functional groups were affected by D. desulfuricans. After treatment, a twofold increase in the sulfur content of Kraft lignin and a minor decrease (14%) in the sulfur content of lignosulfonate were observed. After biological treatment, Kraft lignin and lignosulfonate both bound larger quantities of heavy metals.  相似文献   

8.
Because turgor pressure is regarded as the driving force for cell extension, any general theory of plant growth requires quantitative information on the relationship between steady irreversible growth rate and turgor pressure. To investigate contrasting views of this relation an automated apparatus was constructed which perfused both the outer and inner epidermis of a single coleoptile while its growth rate was continuously recorded. Turgor was altered abruptly by perfusing with solutions of varying tonicity. With specially grown rye coleoptiles the half-time of the osmo-elastic response was reduced to 2 minutes or less. After decay of this response, however, rate continued to change (so as to partially compensate the effects of the turgor shift in question) for 30 to 60 minutes. Only then could a steady rate be taken. A characterization of steady rate versus turgor covering five turgor values for a single coleoptile thus required many hours. The conclusions are as follows. (a) The change in steady rate, per unit change in turgor, was much greater +IAA than −IAA. (b) Both auxin and turgor act to reset an apparent stabilizing system whose presence is shown in the partial compensation of the initial response to turgor shifts. The above “extensibility” changes are operational only. They need not reflect changes in the immediate physical extensibility of the wall; they could reflect changes in a process acting on the wall. (c) The growth rate versus turgor relation shows some hysteresis.  相似文献   

9.
Mechanisms of adaptation of the photosynthetic apparatus at the level of pigment complex in a shade-tolerant bugle plant (Ajuga reptans L.) grown at full solar irradiation in an open plot were studied. In “sun” plants, the content of photosynthetic pigments decreased markedly as compared to “shade” plants grown under a forest canopy at 5–10% of the full solar irradiation. In leaves of sun plants, the portion of β-carotene and lutein in the carotenoid spectrum was higher than in shade plant leaves, antheraxanthin and zeaxanthin were present, and de-epoxidation of violaxanthin was by an order of magnitude higher in sun plant leaves reaching 40%. The data obtained indicate the role of the violaxanthin cycle in the protection of photosynthetic apparatus in a shade-tolerant plant against destruction under excessive irradiation.  相似文献   

10.
Growth on ethanesulfonic acid as the only sulfur source was found to occur in ten of the 14 green algae tested and in three of the ten cyanobacteria analyzed. Similar growth could not be demonstrated in the higher plant Lemna minor, or in tissue cultures of anise, sunflower and tobacco. Organisms growing on sulfonic acids as the only sulfur source developed an uptake system for ethanesulfonate found neither in algae growing on sulfate nor in algae unable to utilize sulfonic acids for growth. The development of sulfonate transport was not caused by substrate induction, but by conditions of sulfate starvation. The presence of this uptake system was always correlated with an increased sulfate-uptake capacity. Enhanced sulfate uptake was found in all S-deficient and sulfonate-grown cultures tested, indicating sulfate limitation as the regulatory signal. A lag period of 2–2.5 h after transfer to sulfate deprivation was needed for expression of both enhanced sulfate uptake and ethanesulfonate uptake in case of the green alga Chlorella fusca. It is speculated that the availability of sulfate (pool size) or a metabolic product in equilibrium with oxidized sulfur compounds (sulfate ester? sulfolipids?) controls sulfate and sulfonate uptake systems. The principle of (coordinated) derepression by starvation is discussed as a general strategy in photosynthetic organisms.  相似文献   

11.
When suspension cultures of actively growing soybean (Glycine max L.) root cells were separated by two or three membrane filters from suspension cultures of the bacteria, a synergetic (cooperative) activation of nitrogenase was observed in the Rhizobium japonicum used in the bacterial side. Either plant cells or plant cell-conditioned medium was needed for this activation to take place. Both acetylene reduction and hydrogen evolution by the activated R. japonicum persisted for several days after removal from the apparatus when (a) a suitable carbon source was provided, (b) oxygen supply was limited, and (c) growth of bacteria was suppressed by lowering of ammonia and nitrate concentrations. Activation could also take place when the bacteria were placed in media to which plant cell-conditioned medium was added. The advantages of this method for studies on symbiosis are discussed.  相似文献   

12.
In different plant species, vanadium has been considered either as beneficial or as a toxic element, or even as secondary metabolism elicitor, but the mechanisms involved are still not completely understood. In this study, the responses of Phaseolus vulgaris L. cv. Contender roots and leaves to different vanadyl sulfate concentrations were studied. The plants grown hydroponically with V had thicker roots, a less developed main root, and a smaller number of secondary roots than the control plants. The V content in roots and leaves was correlated with V supply concentration but the V content in leaf was always much lower than in the root, which leads us to conclusion that V accumulates in the roots and only small quantities are transferred to the leaves. However, thylakoid disorganisation was observed in the chloroplasts of plants grown with vanadyl sulphate.  相似文献   

13.
Two unknown radioactive areas appeared after radioautography and two dimensional paper chromatography of culture medium in which Escherichia coli was grown. These materials were studied by paper chromatography and paper electrophoresis of several derivatives and identified as ethionine and ethionine sulfone, the latter an artifact. Chromatographic coincidence of the unknowns and their derivatives with authentic materials establishes the identification. Ethionine was found in cellular extracts and in the growth media of Escherichia coli, Bacillus megaterium, Pseudomonas aeruginosa, and Aerobacter aerogenes but not in Scenedesmus, Saccharomyces cerevisiae, or bovine lymphosarcoma cells. Ethionine was synthesized by resting E. coli cultures from radioactive sulfate and from radioactive methionine. Growing cells labeled ethionine within 1 minute after addition of radioactive sulfate to cultures. Levels of radioactivity in ethionine increased with time. No incorporation of this amino acid could be detected in the cellular proteins formed under the conditions of this study.  相似文献   

14.
Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.  相似文献   

15.
Root-knot nematodes (RKNs, genus Meloidogyne) are a class of plant parasites that seek out and infect the roots of many plant species. The identification of RKN attractants can be used in agriculture in conjunction with nematode-trapping technology to redirect RKN movements and eventually reduce their prevalence in the field. Here, we discovered that some commercial silica gels can attract nematodes. Silica gels that attract nematodes contain calcium sulfate. Calcium sulfate and calcium carbonate showed strong nematode attraction properties. When plant seeds were surrounded by calcium sulfate or calcium carbonate, nematodes were not attracted to the plant seeds. We propose that calcium sulfate and calcium carbonate can be used in agriculture as a novel material to trap RKN.  相似文献   

16.
17.
Both Impatiens glandulifera and Fallopia japonica are highly invasive plant species that have detrimental impacts on native biodiversity in areas where they invade and form dense monocultures. Both species are weakly dependent on arbuscular mycorrhizal fungi (AMF) for their growth and, therefore, under monotypic stands, the AMF network can become depauperate. We evaluated the impact of I. glandulifera and F. japonica on the performance (expressed as shoot biomass) of three UK native species (Plantago lanceolata, Lotus corniculatus and Trifolium pratense) grown in soil collected from under stands of both invasive plants and compared to plants grown in soil from under stands of the corresponding native vegetation. All native species had a higher percentage colonisation of AMF when grown in uninvaded soil compared to the corresponding invaded soil. P. lanceolata and L. corniculatus had a higher biomass when grown in uninvaded soil compared to corresponding invaded soil indicating an indirect impact from the non-native species. However, for T. pratense there was no difference in biomass between soil types related to I. glandulifera, suggesting that the species is more reliant on rhizobial bacteria. We conclude that simply managing invasive populations of non-native species that are weakly, or non-dependent, on AMF is inadequate for habitat restoration as native plant colonisation and establishment may be hindered by the depleted levels of AMF in the soil below invaded monocultures. We suggest that the reintroduction of native plants to promote AMF proliferation should be incorporated into future management plans for habitats degraded by non-native plant species.  相似文献   

18.
Iron sulfide plaques have been observed on roots of wild rice (Zizania palustris) and other wetland plants grown in sulfur-impacted freshwater ecosystems, but the mechanism of their formation and ramifications for plants have not been investigated. We exposed a model annual wetland plant, Zizania palustris, to elevated sulfate concentrations (3.1 mM) and quantified the development of iron oxide and iron sulfide precipitates on root surfaces throughout the plant life cycle. During the onset of seed production, root surfaces amended with sulfate transitioned within 1 week from iron (hydr)oxide plaques to iron sulfide plaques. During the same week, Fe(III) decreased on roots of plants not amended with sulfate but FeS did not accumulate. Prior to FeS accumulation, sulfate-amended plants had taken up the same amount of N as unamended plants. After FeS accumulation, total plant nitrogen did not increase further on sulfate-amended plants, indicating a cessation in nitrogen uptake, whereas total plant N continued to increase in unamended plants. Sulfate-amended plants produced fewer and lighter seeds with less nitrogen than unamended plants. FeS precipitation on roots may be associated with elevated sulfide and inhibited nitrogen uptake before the end of the plant’s life cycle, thus affecting the populations of this annual aquatic plant. We propose a mechanism by which a physiologically-induced decline in radial oxygen loss near the end of a plant’s life cycle initiates a precipitous decline in redox potential at the root surface and in adjacent porewater, initiating accumulation of iron sulfide plaques. These plaques could be an important locus for iron sulfide accumulation in wetland sediments.  相似文献   

19.
Mutant of Arabidopsis deficient in xylem loading of phosphate   总被引:30,自引:3,他引:27       下载免费PDF全文
A mutant of Arabidopsis thaliana deficient in the accumulation of inorganic phosphate has been isolated by screening directly for plants with altered quantities of total leaf phosphate. The mutant plants accumulate approximately 5% as much inorganic phosphate, and 24 to 44% as much total phosphate, as wild-type plants in aerial portions of the plant. Growth of the mutant is reduced, relative to wild type, and it exhibits other symptoms normally associated with phosphate deficiency. The phosphate deficiency is caused by a single nuclear recessive mutation at a locus designated pho1. The rate of phosphate uptake into the roots was similar between mutant and wild-type plants over a wide range of external phosphate concentrations. In contrast, when plants were grown in media containing 200 micromolar phosphate or less, phosphate transfer to the shoots of the mutant was reduced to 3 to 10% of the wild-type levels. The defect in phosphate transfer to the shoots could be overcome by providing higher levels of phosphate. Transfer of sulfate to the shoots was essentially normal in the mutant, indicating that the pho1 lesion was not a general defect in anion transport. Movement of phosphate through the xylem of the shoots was not impaired. The results suggest that the mutant is deficient in activity of a protein required to load phosphate into the xylem.  相似文献   

20.
Sinorhizobium sp. strain BR816 possesses two nodPQ copies, providing activated sulfate (3′-phosphoadenosine-5′-phosphosulfate [PAPS]) needed for the biosynthesis of sulfated Nod factors. It was previously shown that the Nod factors synthesized by a nodPQ double mutant are not structurally different from those of the wild-type strain. In this study, we describe the characterization of a third sulfate activation locus. Two open reading frames were fully characterized and displayed the highest similarity with the Sinorhizobium meliloti housekeeping ATP sulfurylase subunits, encoded by the cysDN genes. The growth characteristics as well as the levels of Nod factor sulfation of a cysD mutant (FAJ1600) and a nodP1 nodQ2 cysD triple mutant (FAJ1604) were determined. FAJ1600 shows a prolonged lag phase only with inorganic sulfate as the sole sulfur source, compared to the wild-type parent. On the other hand, FAJ1604 requires cysteine for growth and produces sulfate-free Nod factors. Apigenin-induced nod gene expression for Nod factor synthesis does not influence the growth characteristics of any of the strains studied in the presence of different sulfur sources. In this way, it could be demonstrated that the “household” CysDN sulfate activation complex of Sinorhizobium sp. strain BR816 can additionally ensure Nod factor sulfation, whereas the symbiotic PAPS pool, generated by the nodPQ sulfate activation loci, can be engaged for sulfation of amino acids. Finally, our results show that rhizobial growth defects are likely the reason for a decreased nitrogen fixation capacity of bean plants inoculated with cysD mutant strains, which can be restored by adding methionine to the plant nutrient solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号