首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The microtubule (MT) arrangement in three kinetochore fibers in the acentric spindles of the green algaOedogonium cardiacum were reconstructed from serial sections of prometaphase and metaphase cells. The majority of the MTs attached to the kinetochore (kMTs) are relatively short, extending less than a third of the distance to the putative spindle pole region, and none extended the full distance. Fine filaments and a matrix described earlier (Schibler andPickett-Heaps 1980) were associated with the MTs all along the fibers. Live cells ofOedogonium were also studied by time lapse cinematography for correlation with the ultrastructural observations. Late prometaphase and metaphase kinetochore fibers appear to move independently as if unattached at their poleward ends. These observations suggest that kinetochore fibers inOedogonium are not attached to a specific pole structure from late prometaphase until the inception of anaphase. The results are discussed with reference to spindle structure and function in general.  相似文献   

2.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

3.
Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally.  相似文献   

4.
To test the "traction fiber" model for metaphase positioning of bivalents during meiosis, kinetochore fibers of maloriented bivalents, induced during recovery from cold arrest, were analyzed with a liquid crystal polarizing microscope. The measured birefringence retardation of kinetochore fibers is proportional to the number of microtubules in a fiber. Five of the 11 maloriented bivalents analyzed exhibited bipolar malorientations that had at least four times more kinetochore microtubules to one pole than to the other pole, and two had microtubules directed to only one pole. Yet all maloriented bivalents had positions at or near the spindle equator. The traction fiber model predicts such maloriented bivalents should be positioned closer to the pole with more kinetochore microtubules. A metaphase position at the spindle equator, according to the model, requires equal numbers of kinetochore microtubules to both poles. Data from polarizing microscope images were not in accord with those predictions, leading to the conclusion that other factors, in addition to traction forces, must be involved in metaphase positioning in crane-fly spermatocytes. Although the identity of additional factors has not been established, one possibility is that polar ejection forces operate to exert away-from-the-pole forces that could counteract pole-directed traction forces. Another is that kinetochores are "smart," meaning they embody a position-sensitive mechanism that controls their activity.  相似文献   

5.
Louis F. Marek 《Chromosoma》1978,68(4):367-398
The influence of the mitotic organizing centers, the kinetochores and the polar organizers, in controlling the dynamic spindle form and function has been investigated in the primary spermatocytes of two grasshoppers, Arphia xanthoptera and Melanoplus differentialis. A new measure of the total birefringent material in the spindle is introduced—volume-birefringence. This measure avoids many of the problems associated with the traditional retardation measurements of spindle organization.—The number of chromosomes (and their kinetochores) in a spindle can be altered with a piezoelectric micromanipulator in three ways: 1) chromosomes can be removed permanently from the cell, 2) chromosomes can be detached from the spindle and allowed to reenter the spindle at a later time, and 3) chromosomes can be transferred from one spindle to another in cells containing two spindles. Such operations show the volume-birefringence of the spindle is proportional to the number of chromosomes in the spindle. A residual volume-birefringence is seen and attributed to the contribution of the polar organizers to spindle structure. The relative polar contribution differs in the two species. Chromosome motion and spindle elongation in anaphase are unaffected by the number of chromosomes in the spindle. The proportion of volume-birefringence associated with a kinetochore is used to estimate the number of microtubules one might expect to see if the birefringence of the spindle is of microtubular origin. These calculations predict about twice the number of microtubules per kinetochore than seen with the electron microscope. Reasons are suggested to explain this discrepancy.— It is argued that chromosome detachment releases spindle component subunits into the total subunit pool, but that these excess subunits do not influence the metaphase form nor the anaphase function of the spindle; therefore, spindle dynamics are under the direct control of the kinetochores and the polar organizing centers.  相似文献   

6.
The centrosome is the main MT organizing center in animal cells, and has traditionally been regarded as essential for organization of the bipolar spindle that facilitates chromosome segregation during mitosis. Centrosomes are associated with the poles of the mitotic spindle, and several cell types require these organelles for spindle formation. However, most plant cells and some female meiotic systems get along without this organelle, and centrosome‐independent spindle assembly has now been identified within some centrosome containing cells. How can such observations, which point to mutually incompatible conclusions regarding the requirement of centrosomes in spindle formation, be interpreted? With emphasis on the functional role of centrosomes, this article summarizes the current models of spindle formation, and outlines how observations obtained from spindle assembly assays in vitro may reconcile conflicting opinions about the mechanism of spindle assembly. It is further described how Drosophila mutants are used to address the functional interrelationships between individual centrosomal proteins and spindle formation in vivo. © 2004 Wiley‐Liss, Inc.  相似文献   

7.
Neither colchicine nor ultracentrifugation, singly or in sequence, significantly alters the normal Rabl distribution of interphase or prophase telomeres in root tip cells of Allium cepa L. The position of telomeres was determined by C-banding, which stains A. cepa chromosomes only at the telomeres. Centrifugation displaces mitotic figures toward one side of the cell, but otherwise their mitotic configurations are little changed. These light microscope results are interpreted to show that a) interphase and prophase telomeres are attached strongly to some component of the nuclear envelope; b) a colchicine-sensitive component apparently does not attach interphase and prophase telomeres to the nuclear envelope; and c) chromosomes at all stages of the cell cycle are attached to some structure, nuclear envelope, and/or spindle fibers.  相似文献   

8.
R. C. Brown  B. E. Lemmon 《Protoplasma》1992,167(3-4):183-192
Summary The unequal first mitosis in pollen ofPhalaenopsis results in a small generative cell cut off at the distal surface of the microspore and a large vegetative cell. No preprophase band of microtubules is present, but polarization of the microspore prior to this critical division is well marked. A generative pole microtubule system (GPMS) marks the path of nuclear migration to the distal surface, and the organelles become unequally distributed. Mitochondria, plastids and dictyosomes are concentrated around the vegetative pole in the center of the microspore and are almost totally excluded from the generative pole. The prophase spindle is multipolar with a dominant convergence center at the GPMS site. The metaphase spindle is disc-shaped with numerous minipoles terminating in broad polar regions. In anaphase, the spindle becomes cone-shaped as the spindle elongates and the vegetative pole narrows. These changes in spindle architecture are reflected in the initial shaping of the telophase chromosome groups. F-actin is coaligned with microtubules in the spindle and is also seen as a network in the cytoplasm. An outstanding feature of orchid pollen mitosis is the abundance of endoplasmic reticulum (ER) associated with the spindle. ER extends along the kinetochore fibers, and the numerous foci of spindle fibers at the broad poles terminate in a complex of ER.Abbreviations CLSM confocal laser scanning microscope/microscopy - DMSO dimethyl sulfoxide - ER endoplasmic reticulum - FITC fluorescein isothiocyanate - GPMS generative pole microtubule system - MBS m-maleimidobenzoic acidN-hydroxysuccinimide ester - PPB preprophase band of microtubules - RhPh rhodamine palloidin - TEM transmission electron microscope/microscopy  相似文献   

9.
Spindle dynamics and arrangement of microtubules   总被引:2,自引:1,他引:1  
Changes in microtubule (MT) arrangement were studied in endosperm of Haemanthus katherinae. Individual cells were selected in the light microscope and sectioned perpendicular or parallel to the long axis of the spindle. The following data and conclusions were drawn: During anaphase kinetochore fibers (bundles of kinetochore MTs) always intermingle with non-kinetochore (continuous) fibers (bundles of non-kinetochore MTs). The latter often branch and some free ends are present. Often one non-kinetochore fiber is connected with more than one kinetochore fiber, explaining why chromosomes may lose their ability for independent movement. During anaphase kinetochore fibers move to the poles, the number of kinetochore MTs decreases by one-half and the MTs tend to become more splayed out. At the same time the number of MTs between trailing chromosome arms increases, probably representing segments of kinetochore MTs which break during anaphase. The number of non-kinetochore MTs in the equatorial region at anaphase is twice the number of non-kinetochore MTs in metaphase. The above data agree perfectly with those in polarized light and indicate that a simple sliding system does not exist in the spindle of Haemanthus.  相似文献   

10.
Andrew Bajer 《Chromosoma》1968,24(4):383-417
Formation and development of phragmoplast and cell plate were studied in endosperm of Haemanthus katherinae Bak. The same cells were studied with the light and electron microscope. Several cells were studied with time-lapse microcinematography before fixation. This permitted comparison of structures during their development on both the light and electron microscope level. Movements of fibrillar components of the phragmoplast and spindle were analyzed and their transport properties were correlated with formation of the cell plate. Change of arrangement of microtubules, transport of vesicles which form the cell plate, and formation of vesicles and microtubules has also been discussed.  相似文献   

11.
Cell division in Chlamydomonas moewusii is described. The cells become immobile with flagellar abscission prior to mitosis. The basal bodies migrate toward the nucleus and become intimately associated with the nuclear membrane which is devoid, of ribosomes where adjacent to the basal bodies. The basal bodies replicate at preprophase. The nucleolus fragments at this stage. By prophase the basal body pairs have migrated, to the nuclear poles. Spindle fibers become prominent in the nucleus. The nuclear membrane does not fragment. The nucleus assumes a crescent-form by metaphase. Polar fenestrae are absent. Kinetochores appear at anaphase. An interzonal spindle elongates as the chromosomes move to the nuclear poles. Daughter nuclei become abscised by an ingrowth of nuclear membrane, leaving behind a separated, degenerating interzonal spindle. Ribosomes reappear on the outer nuclear membrane at late telophase. Nucleoli reform early in cytokinesis. The cleavage furrow, associated microtubules, and endoplasmic reticulum comprise the phycoplast. Cytokinesis proceeds rapidly after the completion of telophase. The basal body-nucleus relationship becomes reorganized into the typical interphase condition late in cytokinesis. Specific and predictable organelle rearrangements during mitosis have been described. Cell division in C. moewusii is compared with other algae, especially C. reinhardi.  相似文献   

12.
Urs-Peter Roos 《Chromosoma》1976,54(4):363-385
Chromosome orientation and behavior during prometaphase of mitosis in PtK1 rat kangaroo cells were investigated by cinémicrography and electron microscopy. The first chromosome movements occur soon after the nuclear envelope begins to break down in the region near each pole. Initial chromosome behavior is primarily determined by the distance from the kinetochore region to the spindle poles. The predominant pattern is a movement to and/or association with the proximal pole. Movement to and association with the more distant pole, or direct alignment at or near the spindle equator (direct congression) are less frequent patterns. Except for rare cases, pole-associated chromosomes congress sooner or later and most congressed chromosomes oscillate about the equator. — Ultrastructural observations suggest that pole-associated chromosomes are oriented only to the proximal pole (monotelic or syntelic orientation) and they demonstrate that the sister-kinetochores of congressing or oscillating chromosomes are oriented to opposite poles (amphitelic orientation). — Based on the structure of the early prometaphase spindle and four assumptions concerning the formation of kinetochore fibers and their force-producing interaction with complementary elements, the different patterns of chromosome behavior observed can be explained as a result of synchronous or asynchronous formation of sister-kinetochore fibers. The few chromosomes whose kinetochore region is approximately equidistant from the poles amphi-orient immediately because their sister-kinetochores form fibers synchronously and they congress directly because of the bidirectional forces to which they are subjected. The kinetochore region of most chromosomes is not equidistant from the poles. Therefore, they form a functional fiber first to the nearer pole and move to, or associate with, it because of the unidirectional force. Eventually, however, these chromosomes achieve amphitelic orientation and congress. Once established, amphitelic orientation is stable. Re-orientations do not occur during congression or oscillatory movements.  相似文献   

13.
THE FINE STRUCTURE OF THE MID-BODY OF THE RAT ERYTHROBLAST   总被引:14,自引:12,他引:2       下载免费PDF全文
The development of the mid-body has been studied in mitotic erythroblasts of the rat bone marrow by means of thin sections examined with the electron microscope. A differentiated region on the continuous spindle fibers, consisting of a localized increase in density, is observed at the equatorial plane. The mid-body seems to develop by the aggregation of such denser lengths of spindle fiber. Its appearance precedes that of the cleavage furrow. A plate-like arrangement of fibrillary material lies transversely across the telophase intercellular bridge. Later, this material becomes amorphous and assumes the form of a dense ring closely applied to a ridge in the plasma membrane encircling the middle of the bridge. Although the mid-body forms in association with the spindle fibers, it is a structurally distinct part, and the changes which it undergoes are not shared by the rest of the bundle of continuous fibers.  相似文献   

14.
Two types of unusual motion within the spindle have heen studied in a grasshopper (Melanoplus differentialis) spermatocyte. The first is the motion of granules placed by micromanipulation within the normally granule-free spindle. The most specific motions are poleward, approximate the speed of the chromosomes in anaphase, and occur in the area between the kinetochores and the nearer pole during both metaphase and anaphase. Exactly the same transport properties were earlier observed by Bajer inHaemanthus endosperm spindles. The absence of significant motion in the interzone between the separating chromosomes at anaphase has been unequivocally demonstrated inMelanoplus spermatocytes. Thus very specific motion of non-kinetochoric materials is probably a general spindle capability which would much restrict admissible models of mitotic force production,if the same forces move both granules and chromosomes. The second unusual motion is seen following chromosome detachment from the spindle by micromanipulation during anaphase. These tend to move toNearer pole rather than to the pole the chromosome's kinetochoresFace. The latter preference was earlier demonstrated after detachment during prometaphase or metaphase and has been confirmed without exception in the present studies. The apparent preference for motion to the nearer pole in anaphase provides the first evidence for poleward forces within each half-spindle which cannot be entirely specified by the chromosomal spindle fibers. Almost certainly these would be the usual forces responsible for chromosome motion since they act specifically at the kinetochores of detached chromosomes. This evidence requires interpretation, however because additional factors influence chromosome motion following detachment at anaphase. On thesimplest interpretation, certain current models of mitosis clearly are not satisfactory and others are favored.  相似文献   

15.
Immunofluorescence microscopy has been used to follow the rearrangement of intermediate-sized filaments during mitosis in rat kangaroo PtK2 cells. These epithelial cells express two different intermediate filament systems: the keratin-related tonofilament-like arrays typical of epithelial cells, and the vimentin-type filaments characteristic of mesenchymal cells in vivo, and of many established cell lines. The two filament systems do not appear to depolymerize extensively during mitosis, but show differences in their organization and display which may indicate different functions. The most striking rearrangements have been seen with the vimentin filaments, and in particular in prometaphase a transient cage-like structure of vimentin fibers surrounding the developing spindle is formed. In metaphase, this cage disappears, and vimentin fibers are found in an elliptical band surrounding the chromosomes and the interzone. In telophase, these bands separate, usually breaking first on the side closest to where the cleavage furrow has started to form. Double label experiments with tubulin and vimentin antibodies have indicated that the microtubules and the chromosomes are contained within the thick crescents of vimentin filaments and suggest that the vimentin intermediate filaments may be involved in the orientation of the spindle and/or the chromosomes during mitosis. In contrast, extensive arrays of cytokeratin filaments are present throughout mitosis on the substrate-attached side of the cell and also in other cellular areas, although they are usually not present in the spindle region. Thus the cytokeratin filaments probably continue to play a cytoskeletal role during mitosis and may be responsible for the flat shape that certain epithelial cells such as PtK2 cells continue to maintain during mitosis.  相似文献   

16.
This study investigated the basis of meiosis II nondisjunction. Cold arrest induced a fraction of meiosis II crane fly spermatocytes to form (n + 1) and (n - 1) daughters during recovery. Live-cell liquid crystal polarized light microscope imaging showed nondisjunction was caused by chromosome malorientation. Whereas amphitely (sister kinetochore fibers to opposite poles) is normal, cold recovery induced anaphase syntely (sister fibers to the same pole) and merotely (fibers to both poles from 1 kinetochore). Maloriented chromosomes had stable metaphase positions near the equator or between the equator and a pole. Syntelics were at the spindle periphery at metaphase; their sisters disconnected at anaphase and moved all the way to a centrosome, as their strongly birefringent kinetochore fibers shortened. The kinetochore fibers of merotelics shortened little if any during anaphase, making anaphase lag common. If one fiber of a merotelic was more birefringent than the other, the less birefringent fiber lengthened with anaphase spindle elongation, often permitting inclusion of merotelics in a daughter nucleus. Meroamphitely (near amphitely but with some merotely) caused sisters to move in opposite directions. In contrast, syntely and merosyntely (near syntely but with some merotely) resulted in nondisjunction. Anaphase malorientations were more frequent after longer arrests, with particularly long arrests required to induce syntely and merosyntely.  相似文献   

17.
Summary This is a preliminary electron microscope investigation in which the structure of insect neurons, neuropile, and interganglionic fibers are studied.Neurons of insect are pear-shaped and have an unique prolongation which ramifies into the neuropile. Their soma is surrounded by glial prolongations that exclude the possibility of nervous contacts. The neuronal cytoplasm is rich in granular material similar to the one described as R.N.A. by several authors; it is scattered at random or associated with endoplasmic reticulum cysternae. The latter does not adopt the regular array characterizing the vertebrate Nissl bodies.A large number of naked fibers is seen in the neuropile. The content of these fibers is different in fibers of different diameter. The thinner elements appear light and show a loose reticular matrix, few vesicles, and mitochondria. The thick fibers are characterized by a denser neuroplasm constituted by a reticular matrix and rows of tiny vesicles alternating with profils of tubuli. In some of these fibers the tubuli are seen in a central position.Three main types of contact relationships between fibers are described in the neuropile. These are; a) cross contacts; b) longitudinal contacts; and c) endknob contacts. The first type is in turn subdivided into subtypes, namely: minimum-area cross contacts and maximum-area cross contacts.A glial sheath enveloping each connective nerve fiber is described. Inside the cytoplasm of such cells there are bundles of dense, thin fibrils twisted along the nerve fibers.The criteria maintained by several authors in regard to the fine structure of the synaptic region are discussed and compared with facts reported in this paper.  相似文献   

18.
The meiotic spindle is crucial for normal chromosome alignment and separation of maternal chromosomes during meiosis. Conventional methods to image spindles rely on fixation and transmission electron microscope or immunofluorescence staining and fluorescence microscope, so they provide limited value to studies of spindle dynamics and human clinical in vitro fertilization. A new orientation-independent polarized light microscope, the LC Polscope, was used to examine the bi-refringent spindles in living mammalian oocytes. It was found that spindles could be imaged with the Polscope in living oocytes in all mammals so far examined, including hamster, mouse, cattle, human, and rat. The first polar body did not accurately predict the spindle location in most metaphase II oocytes. Intracytoplasmic sperm injection (ICSI) could be performed by monitoring spindle position. Studies in humans indicated that, aftr ICSI, higher fertilization and embryonic developmental rates could be achieved in oocytes with than without bi-refringent spindles. Because spindles in most mammalian oocytes are extremely sensitive to slight changes in temperature, maintenance of temperature at 37 degrees C is crucial for normal spindle function. As chromosomes#10; are usually associated with microtubule fibers in the spindles, the position of chromosomes could be indirectly located by imaging spindles. Removing spindles under the Polscope can achieve an enucleation#10; efficiency rate of 100% in mouse oocytes. The Polscope can also be used to examine the spindle dynamics, detect spindle morphology, predict chromosome misalignment, and perform spindle transfer.  相似文献   

19.
We have used micromanipulation to study the attachment of chromosomes to the spindle and the mechanical properties of the chromosomal spindle fibers. Individual chromosomes can be displaced about the periphery of the spindle, in the plane of the metaphase plate, without altering the structure of the spindle or the positions of the nonmanipulated chromosomes. From mid-prometaphase through the onset of anaphase, chromosomes resist displacement toward either spindle pole, or beyond the spindle periphery. In anaphase a chromosome can be displaced either toward its spindle pole or laterally, beyond the periphery of the spindle; however, the chromosome resists displacement away from the spindle pole. When an anaphase half-bivalent is displaced toward its spindle pole, it stops migrating until the nonmanipulated half-bivalents reach a similar distance from the pole. The manipulated half-bivalent then resumes its poleward migration at the normal anaphase rate. No evidence was found for mechanical attachments between separating half-bivalents in anaphase. Our observations demonstrate that chromosomes are individually anchored to the spindle by fibers which connect the kinetochores of the chromosomes to the spindle poles. These fibers are flexible, much less extensible than the chromosomes, and are to pivot about their attachment points. While the fibers are able to support a tensile force sufficient to stretch a chromosome, they buckle when subjected to a compressive force. Preliminary evidence suggests that the mechanical attachment fibers detected with micromanipulation correspond to the birefringent chromosomal spindle fibers observed with polarization microscopy.  相似文献   

20.
The fine structure of the dividing nucleus in the intracellular amastigote forms of Trypanosoma cruzi from tissue cultures has been described. In the first phase of division the nucleus shows a homogenous structure owing to the dispersion of its chromatin and nucleolar material. Microtubules similar to those of a mitotic spindle in metozoan cells then appear, running from one pole to the other. They disappear when the division of the nucleus is complete and the chromatin and the nucleolar material reorganize into their former positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号