首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AFLPTM is a new technique to generate large numbers of molecular markers for genetic mapping. The method involves the selective amplification of a limited number of DNA restriction fragments out of complex plant genomic DNA digests using PCR. With six primer combinations 264 segregating AFLP amplification products were identified in a diploid backcross population from non-inbred potato parents. The identity of an AFLP marker was specified by the primer combination of the amplification product and its size estimated in bases. The segregating AFLP amplification products were mapped by using a mapping population with 217 already known RFLP, isozyme and morphological trait loci. In general, the AFLP markers were randomly distributed over the genome, although a few clusters were observed. No indications were found that AFLP markers are present in other parts of the genome than those already covered by RFLP markers. Locus specificity of AFLP markers was demonstrated because equally sized amplification products segregating from both parental clones generally mapped to indistinguishable maternal and paternal map positions. Locus specificity of AFLP amplification products will allow to establish the chromosomal identity of linkage groups in future mapping studies.Since AFLP technology is a multi-locus detection system, it was not possible to identify the AFLP alleles which belong to a single AFLP locus. The consequences of a genetic analysis based on single alleles, rather than on loci with two or more alleles on mapping studies using progenies of non-inbred parents are discussed.  相似文献   

2.
A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers   总被引:2,自引:0,他引:2  
Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP markers were mapped in an F2 population, derived from an interspecific cross between a Lactuca sativa cultivar commonly used in Europe and a wild Lactuca serriola isolate from Northern Europe. The cross has been designed to aid efforts to assess gene flow from cultivated lettuce into the wild in the perspective of genetic modification biosafety. The markers were mapped in nine major and one minor linkage groups spanning 1,266.1 cM, with an average distance of 2.8 cM between adjacent mapped markers. The markers are well distributed throughout the lettuce genome, with limited clustering of different marker types. Seventy-seven of the AFLP markers have been mapped previously and cross-comparison shows that the map from this study corresponds well with the previous linkage map.  相似文献   

3.
Recent development of DNA markers provides powerful tools for population genetic analyses. Amplified fragment length polymorphism (AFLP) markers result from a polymerase chain reaction (PCR)-based DNA fingerprinting technique that can detect multiple restriction fragments in a single polyacrylamide gel, and thus are potentially useful for population genetic studies. Because AFLP markers have to be analysed as dominant loci in order to estimate population genetic diversity and genetic structure parameters, one must assume that dominant (amplified) alleles are identical in state, recessive (unamplified) alleles are identical in state, AFLP fragments segregate according to Mendelian expectations and that the genotypes of an AFLP locus are in Hardy-Weinberg equilibrium (HWE). The HWE assumption is untestable for natural populations using dominant markers. Restriction fragment length polymorphism (RFLP) markers segregate as codominant alleles, and can therefore be used to test the HWE assumption that is critical for analysing AFLP data. This study examined whether the dominant AFLP markers could provide accurate estimates of genetic variability for the Aedes aegypti mosquito populations of Trinidad, West Indies, by comparing genetic structure parameters using AFLP and RFLP markers. For AFLP markers, we tested a total of five primer combinations and scored 137 putative loci. For RFLP, we examined a total of eight mapped markers that provide a broad coverage of mosquito genome. The estimated average heterozygosity with AFLP markers was similar among the populations (0.39), and the observed average heterozygosity with RFLP markers varied from 0.44 to 0.58. The average FST (standardized among-population genetic variance) estimates were 0.033 for AFLP and 0.063 for RFLP markers. The genotypes at several RFLP loci were not in HWE, suggesting that the assumption critical for analysing AFLP data was invalid for some loci of the mosquito populations in Trinidad. Therefore, the results suggest that, compared with dominant molecular markers, codominant DNA markers provide better estimates of population genetic variability, and offer more statistical power for detecting population genetic structure.  相似文献   

4.
古瑜  赵前程  孙德岭  宋文芹 《遗传》2007,29(6):751-757
利用AFLP和NBS profiling技术, 以花椰菜自交系“AD白花”与高代自交不亲和系“C-8”杂交得到的F1代自交产生的F2代分离群体为材料, 构建了第一个花椰菜遗传连锁图谱。该图谱由234个AFLP标记和21个NBS标记构成了9个连锁群, 总图距为668.4 cM, 标记间平均距离为2.9 cM。每个连锁群包含的位点数从12到47个, 相邻两标记之间的距离范围是0~14.9 cM。NBS标记分布在8个连锁群中, 这些标记大部分聚在一起。本研究为今后的基因定位及重要农艺性状的分析提供框架图。此外, 研究NBS profiling 方法在花椰菜中的稳定性和有效性以及NBS-LRR类RGA在花椰菜基因组中的分布和特点。  相似文献   

5.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

6.
Using AFLP technology and a recombinant inbred line population derived from the sorghum cross of BTx623 × IS3620C, a high-density genetic map of the sorghum genome was constructed. The 1713 cM map encompassed 2926 loci distributed on ten linkage groups; 2454 of those loci are AFLP products generated from either the EcoRI/MseI or PstI/MseI enzyme combinations. Among the non-AFLP markers, 136 are SSRs previously mapped in sorghum, and 203 are cDNA and genomic clones from rice, barley, oat, and maize. This latter group of markers has been mapped in various grass species and, as such, can serve as reference markers in comparative mapping. Of the nearly 3000 markers mapped, 692 comprised a LOD 3.0 framework map on which the remaining markers were placed with lower resolution (LOD <3.0). By comparing the map positions of the common grass markers in all sorghum maps reported to date, it was determined that these reference markers were essentially collinear in all published maps. Some clustering of the EcoRI/MseI AFLP markers was observed, possibly in centromeric regions. In general, however, the AFLP markers filled most of the gaps left by the RFLP/SSR markers demonstrating that AFLP technology is effective in providing excellent genome coverage. A web site, http://SorghumGenome.tamu.edu, has been created to provide all the necessary information to facilitate the use of this map and the 2590 PCR-based markers. Finally, we discuss how the information contained in this map is being integrated into a sorghum physical map for map-based gene isolation, comparative genome analysis, and as a source of sequence-ready clones for genome sequencing projects.  相似文献   

7.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   

8.
A physical amplified fragment-length polymorphism map of Arabidopsis.   总被引:5,自引:0,他引:5  
We have positioned amplified fragment-length polymorphism (AFLP) markers directly on the genome sequence of a complex organism, Arabidopsis, by combining gel-based AFLP analysis with in silico restriction fragment analysis using the published genome sequence. For placement of the markers, we used information on restriction fragment size, four selective nucleotides, and the rough genetic position of the markers as deduced from the analysis of a limited number of Columbia (Col)/Landsberg (Ler) recombinant inbred lines. This approach allows for exact physical positioning of markers as opposed to the statistical localization resulting from traditional genetic mapping procedures. In addition, it is fast because no extensive segregation analysis is needed. In principle, the method can be applied to all organisms for which a complete or nearly complete genome sequence is available. We have located 1,267 AFLP Col/Ler markers resulting from 256 SacI+2, MseI+2 primer combinations to a physical position on the Arabidopsis genome. The positioning was verified by sequence analysis of 70 markers and by segregation analysis of two leaf-form mutants. Approximately 50% of the mapped Col/Ler AFLP markers can be used for segregation analysis in Col/C24, Col/Wassilewskija, or Col/Cape Verde Islands crosses. We present data on one such cross: the localization of a viviparous-like mutant segregating in a Col/C24 cross.  相似文献   

9.
用AFLP标记快速构建遗传连锁图谱并定位一个新基因tms5   总被引:4,自引:0,他引:4  
报导了一个分子标记连锁图的快速构建方法。通过对水稻(Oryza sativa L.)“安农S-1”和“南京11”的F2分离群体的AFLP分析找到了142个AFLP标记,用这142个AFLP标记以及已定位的25个SSR标记和5个RFIP标记构建了水稻12个染色体的分子标记连锁图,该图覆盖水稻基因组的1537.4cM,相邻标记间的平均间距为9.0cM,这是在国内建立的第一张AFLP标记连锁图。在建立连锁图谱的同时把一个新基因tms5(水稻温敏核不育基因)定位在第2染色体上。  相似文献   

10.
报导了一个分子标记连锁图的快速构建方法.通过对水稻(Oryza sativa L.)"安农S-1"和"南京11"的F2分离群体的AFLP分析找到了142个AFLP标记,用这142个AFLP标记以及已定位的25个SSR标记和5个RFLP标记构建了水稻12个染色体的分子标记连锁图,该图覆盖水稻基因组的1 537.4 cM,相邻标记间的平均间距为9.0 cM,这是在国内建立的第一张AFLP标记连锁图.在建立连锁图谱的同时把一个新基因tms5 (水稻温敏核不育基因)定位在第2染色体上.  相似文献   

11.
Towards rice genome scanning by map-based AFLP fingerprinting   总被引:4,自引:0,他引:4  
Map-based DNA fingerprinting with AFLP markers provides a fast method for scanning the rice genome. Three hundred AFLP markers identified with ten primer combinations were mapped in two rice populations. The genetic maps were aligned and almost full coverage of the rice genome was obtained. The transferability of AFLP markers between indica × japonica and indica × indica crosses was tested. The chromosomes were divided into DNA Fingerprint Linkage Blocks (DFLBs) defined by specific AFLP markers. Using these blocks, the degree of similarity or divergence within specific chromosome regions was calculated for nine varieties. Applications of map-based fingerprinting for biodiversity studies and maker-assisted selection are discussed. Received: 6 June 1998 / Accepted: 11 November 1998  相似文献   

12.
A mapping referential family (F1) of ayu was produced by crossing a normal diploid male with a homozygous clonal female. A genetic linkage map was constructed using 191 amplified fragment length polymorphism (AFLP) and 4 microsatellite DNA markers. A total of 178 loci were mapped in 36 linkage groups comprising 1659.6 cM, which includes approximately 77.3% to 81.8% of the total genome. As the markers were randomly distributed over the genome, they showed high efficiency for the construction of a wide linkage map.  相似文献   

13.
Within the Dutch genomics initiative the "Centre for Biosystems Genomics" (CBSG) a major research effort is directed at the identification and unraveling of processes and mechanisms affecting fruit quality in tomato. The basis of this fruit quality program was a diverse set of 94 cultivated tomato cultivars, representing a wide spectrum of phenotypes for quality related traits. This paper describes a diversity study performed on these cultivars, using information of 882 AFLP markers, of which 304 markers had a known map position. The AFLP markers were scored as much as possible in a co-dominant fashion. We investigated genome distribution and coverage for the mapped markers and conclude that it proved difficult to arrive at a dense and uniformly distributed coverage of the genome with markers. Mapped markers and unmapped markers were used to investigate population structure. A clear substructure was observed which seemed to coincide with a grouping based on fruit size. Finally, we studied amount and decay of linkage disequilibrium (LD) along the chromosomes. LD was observed over considerable (genetic) distances. We discuss the feasibility of marker-trait association studies and conclude that the amount of genetic variation in our set of cultivars is limited, but that there exists scope for association studies.  相似文献   

14.
A molecular genetic map was constructed and an electrophoretic karyotype was resolved for Cochliobolus sativus, the causal agent of spot blotch of barley and wheat. The genetic map consists of 27 linkage groups with 97 amplified fragment length polymorphism (AFLP) markers, 31 restriction fragment length polymorphism (RFLP) markers, two polymerase chain reaction amplified markers, the mating type locus (CsMAT), and a gene (VHv1) conditioning high virulence on barley cv. Bowman. These linkage groups covered a map distance of 849 cM. The virulence gene VHv1 cosegregated with six AFLP markers and was mapped on one of the major linkage groups. Fifteen chromosome-sized DNAs were resolved in C. sativus isolates ND93-1 and ND9OPr with contour-clamped homogeneous electric field (CHEF) electrophoresis combined with telomere probe analysis of comigrating chromosome-sized DNAs. The chromosome sizes ranged from 1.25 to 3.80 Mbp, and the genome size of the fungus was estimated to be approximately 33 Mbp. By hybridizing genetically mapped RFLP and AFLP markers to CHEF blots, 25 of the 27 linkage groups were assigned to specific chromosomes. The barley-specific virulence locus VHv1 was localized on a chromosome of 2.80 Mbp from isolate ND9OPr in the CHEF gel. The total map length of the fungus was estimated to be at least 1,329 cM based on the map distance covered by the linked markers and the estimated gaps. Therefore, the physical to genetic distance ratio is approximately 25 kb/cM. Construction of a high-resolution map around target loci will facilitate the cloning of the genes conferring virulence and other characters in C. sativus by a map-based cloning strategy.  相似文献   

15.
DNA methylation and AFLP marker distribution in the soybean genome   总被引:12,自引:0,他引:12  
Amplified fragment length polymorphisms (AFLPs) have become important markers for genetic mapping because of their ability to reliably detect variation at a large number of loci. We report here the dissimilar distribution of two types of AFLP markers generated using restriction enzymes with varying sensitivities to cytosine methylation in the soybean genome. Initially, AFLP markers were placed on a scaffold map of 165 RFLP markers mapped in 42 recombinant inbred (F6:7) lines. These markers were selected from a map of over 500 RFLPs analyzed in 300 recombinant inbred (F6:7) lines generated by crossing BSR101×PI437.654. The randomness of AFLP marker map position was tested using a Poisson-model distribution. We found that AFLP markers generated using EcoRI/MseI deviated significantly from a random distribution, with 34% of the markers displaying dense clustering. In contrast to the EcoRI/MseI AFLP markers, PstI/MseI-generated AFLP markers did not cluster and were under represented in the EcoRI/MseI marker clusters. The restriction enzyme PstI is notably sensitive to cytosine methylation, and these results suggest that this sensitivity affected the distribution of the AFLP markers generated using this enzyme in the soybean genome. The common presence of one EcoRI/MseI AFLP cluster per linkage group and the infrequent presence of markers sensitive to methylation in these clusters are consistent with the low recombination frequency and the high level of cytosine methylation observed in the heterochromatic regions surrounding centromeres. Thus, the dense EcoRI/MseI AFLP marker clusters may be revealing structural features of the soybean genome, including the genetic locations of centromeres. Received: 5 November 1998 / Accepted: 20 February 1999  相似文献   

16.
A diversity array technology (DArT) marker platform was developed for the cotton genome, to evaluate the use of DArT markers compared with AFLP markers in mapping and transferability across the mapping populations. We used a reference genetic map of tetraploid Gossypium L. that already contained ~5000 loci, which coalesced into 26 chromosomes, to anchor newly developed DArT and AFLP markers with the aim of further improving utility and map resolution. Our results indicated that the percentage of polymorphic DArT markers that could be genetically mapped (78.15%) was much higher than that of AFLP markers (22.28%). Sequence analysis of DArT markers indicated that a majority matched known expressed sequence tag (EST) sequences from tetraploid and diploid Gossypium species. A total of 794 Arabidopsis genes were homologous with various DArT marker sequences. Chromosomes 5(A), 7(A), 19(D), 23(D), and 24(D) had more Arabidopsis syntenic DArT markers than the other chromosomes. Anchoring DArT markers from the reference map to a recombinant inbred line (RIL) map indicated that DArT markers will speed the building of maps in de novo RIL populations.  相似文献   

17.
Amplified fragment length polymorphisms (AFLPs) can be used to quickly develop linkage maps in plant species and are especially useful for crops with large genomes like oat (Avena sativa L., 2n=6x=42). High reproducibility and consistency are crucial if AFLP linkage maps are employed for comparative mapping. We mapped AFLP markers in combination with restriction fragment length polymorphism (RFLP) markers in two recombinant inbred populations of hexaploid oat in two laboratories to test the consistency of AFLP markers in a polyploid crop. Eight primer combinations produced 102 and 121 scoreable AFLP markers in the respective populations. In a population from the cross Kanota×Ogle, AFLP markers were placed onto a RFLP reference map consisting of 32 linkage groups. Nineteen linkage groups from another population from the cross Kanota×Marion were assigned to the reference map using AFLP and RFLP markers homologous to those used in the Kanota× Ogle cross. Reproducibility of AFLP assays was high in both laboratories and between laboratories. The AFLP markers were well-distributed across the genome in both populations. Many AFLP markers tended to extend the distance between adjacent RFLP markers in linkage analysis. Of the 27 polymorphic AFLPs common in both populations, 20 mapped to homologous linkage groups, 4 were unlinked in at least one population, and 3 mapped to different linkage groups in the two crosses. We believe that 1 of the 3 markers that mapped to a different linkage group in the two populations mapped to homoeologous linkage groups. The linkage map of hexaploid oat is not yet complete, and genomic rearrangements such as translocations exist among cultivars and are likely to account for the remaining two non-syntenous mapping results. AFLPs provide not only a fast and powerful tool for mapping but could be useful in characterizing genomic structural variations among germplasms in hexaploid oat. Received: 17 December 1999 / Accepted: 28 July 2000  相似文献   

18.
A genetic map of Maritime pine based on AFLP, RAPD and protein markers   总被引:12,自引:0,他引:12  
TheAFLP (amplified fragment length polymorphism) technique was adapted to carry out genetic analysis in maritime pine, a species characterized by a large genome size (24 pg/C). A genetic linkage map was constructed for one F1 individual based on 239 AFLP and 127 RAPD (randomly amplified polymorphic DNA) markers. Markers were scored on megagametophytes (1n) from 200 germinated F2 seedlings. Polymorphism rate, labour time and cost of both AFLP and RAPD techniques were compared. The AFLP technique was found to be twice as fast and three-times less costly per marker than the RAPD technique. Thirteen linkage groups were identified with a LOD score ≥6 covering 1873 cM, which provided 93.4% of genome coverage. Proteins were extracted from needles (2n) of the F2 progeny and revealed by 2-DE (two-dimensional electrophoresis). Thirty one segregating proteins were mapped using a QTL detection strategy based on the quantification of protein accumulation. Two framework maps of the same F1 individual are now available. The first map (Plomion et al. 1996) uses RAPD markers and the second map, presented in this study, uses mostly AFLP markers. Although the total genetic length of both maps was almost identical, differences among homologous groups were observed. Received: 11 February 1999 / Accepted: 29 April 1999  相似文献   

19.
Garlic (Allium sativum L.) is a long-cultivated, clonally propagated diploid plant (2n=2x=16). With routine seed production now underway, we used populations (MP1 and MP2) generated by self-pollination of unrelated plants to generate two low-density genetic maps of garlic, consisting of amplified fragment length polymorphism (AFLP) and gene-specific markers. We did not observe any two plants with identical marker patterns in either population, indicating that they were the result of amphimixis rather than apomixis. This is an important finding, since several Alliums are facultative apomicts. A total of 360 markers segregated in MP1 (12.8 AFLP markers per primer combination) and 321 markers segregated in MP2 (13.9 per primer combination) to indicate a fairly high level of genetic heterozygosity in the garlic nuclear genome. Of these markers, 15.3% in MP1 and 24.3% in MP2 had segregation ratios distorted from the expected 3:1. Interestingly, 94.7% of those distorted segregations fit a 15:1 segregation ratio for duplicated loci, suggesting extensive levels of duplication in the garlic genome and supporting similar observations for onion. The genetic map for the MP1 family with 216 markers spanned 1,166 cM of the garlic genome (5.4 cM average), while 143 markers of MP2 spanned 862 cM (6.0 cM average). Gene-specific markers for alliinase, chitinase, sucrose 1-fructosyltransferase (SST-1), and chalcone synthase (CHS) were mapped, demonstrating the immediate utility of the garlic genetic map. These two garlic families had relatively few segregating AFLP markers in common, which supports their relatively distant relationship based on diversity analysis. Of those markers that were conserved, linkages were also conserved.  相似文献   

20.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号