首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The estrogen-related receptor alpha (ERRalpha) is an orphan member of the superfamily of nuclear receptors involved in the control of energy metabolism. In particular, ERRalpha induces a high energy expenditure in the presence of the coactivator PGC-1alpha. However, ERRalpha knockout mice have reduced fat mass and are resistant to diet-induced obesity. ERRalpha is expressed in epithelial cells of the small intestine, and because the intestine is the first step in the energy chain, we investigated whether ERRalpha plays a function in dietary energy handling. Gene expression profiling in the intestine identified a subset of genes involved in oxidative phosphorylation that were down-regulated in the absence of ERRalpha. In support of the physiological role of ERRalpha in this pathway, isolated enterocytes from ERRalpha knockout mice display lower capacity for beta-oxidation. Microarray results also show altered expression of genes involved in dietary lipid digestion and absorption, such as pancreatic lipase-related protein 2 (PLRP2), fatty acid-binding protein 1 and 2 (L-FABP and I-FABP), and apolipoprotein A-IV (apoA-IV). In agreement, we found that ERRalpha-/- pups exhibit significant lipid malabsorption. We further show that the apoA-IV promoter is a direct target of ERRalpha and that its presence is required to maintain basal level but not feeding-induced regulation of the apoA-IV gene in mice. ERRalpha, in cooperation with PGC-1alpha, activates the apoA-IV promoter via interaction with the apoC-III enhancer in both human and mouse. Our results demonstrate that apoA-IV is a direct ERRalpha target gene and suggest a function for ERRalpha in intestinal fat transport, a crucial step in energy balance.  相似文献   

10.
Wang L  Li Y  Hu P  Teng CT 《The Biochemical journal》2008,416(3):407-419
ERR (oestrogen-related receptor)-alpha modulates the oestrogen signalling pathway and regulates genes participating in the physiological energy balance programme. Oestrogen and PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator-1alpha), the master regulator of the energy homoeostasis programme, both regulate the expression of ERRalpha through the MHRE (multi-hormone response element) of the ERRalpha gene. Although the molecular mechanism of oestrogen action on ERRalpha regulation is well characterized, the mechanism of PGC-1alpha induction is unclear. In this study, we examine chromatin structural changes and protein interactions at the MHRE nucleosome in response to PGC-1alpha expression in HK2 human kidney cells. We mapped the nucleosome positions of the ERRalpha gene promoter and examined the changes of histone acetylation in response to PGC-1alpha expression. The interactions of DNA-binding proteins, ERRalpha and ERRgamma, co-activators {CBP [CREB (cAMP-response-element-binding protein)-binding protein], p300, PCAF (p300/CBP-associated factor)}, co-repressor [RIP140 (receptor-interacting protein of 140 kDa)] and RNA polymerase II at the MHRE nucleosome region were investigated over time before and after PGC-1alpha expression in the HK2 cells. We found a dynamic cyclic interaction of these proteins shortly after PGC-1alpha expression and a slower cycling interaction, with fewer proteins involved, 20 h later. By using the siRNA (small interfering RNA) knockdown approach, we discovered that ERRgamma was involved in the initial phase, but not in the later phase, of PGC-1alpha-induced ERRalpha expression.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Estrogen-related receptor alpha (ERRalpha), a member of the nuclear receptor superfamily, is closely related to the estrogen receptors (ERalpha and ERbeta). The ERRalpha gene is estrogen-responsive in several mouse tissues and cell lines, and a multiple hormone-response element (MHRE) in the promoter is an important regulatory region for estrogen-induced ERRalpha gene expression. ERRalpha was recently shown to be a negative prognostic factor for breast cancer survival, with its expression being highest in cancer cells lacking functional ERalpha. The contribution of ERRalpha in breast cancer progression remains unknown but may have important clinical implications. In this study, we investigated ERRalpha gene expression and chromatin structural changes under the influence of 17beta-estradiol in both ER-positive MCF-7 and ER-negative SKBR3 breast cancer cells. We mapped the nucleosome positions of the ERRalpha promoter around the MHRE region and found that the MHRE resides within a single nucleosome. Local chromatin structure of the MHRE exhibited increased restriction enzyme hypersensitivity and enhanced histone H3 and H4 acetylation upon estrogen treatment. Interestingly, estrogen-induced chromatin structural changes could be repressed by estrogen antagonist ICI 182 780 in MCF-7 cells yet were enhanced in SKBR3 cells. We demonstrated, using chromatin immunoprecipitation assays, that 17beta-estradiol induces ERRalpha gene expression in MCF-7 cells through active recruitment of co-activators and release of co-repressors when ERRalpha and AP1 bind and ERalpha is tethered to the MHRE. We also found that this estrogen effect requires the MAPK signaling pathway in both cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号